

Volume No: 1

Issue 2

June 2017

International Multidisciplinary Innovative Research Journal -An International refereed e-journal - Science Issue ISSN: 2456-4613 IMIRJ, 1(2), 2017 [1-6]

FUZZY $\stackrel{\frown}{\Omega}$ -closed sets in fuzzy topological spaces

SANGEETHA.M¹ AND ANBUCHELVI.M²

¹M.Phil. Scholar ²Associate Professor Department of Mathematics V.V.Vanniaperumal College for Women Virudhunagar. TamilNadu, India.

ABSTRACT

This paper aims to fuzzify the concept of $\hat{\Omega}$ - closed set in fuzzy topological space. Some basic properties have been derived. By giving suitable examples, it is shown that this new class lies between the class of fuzzy δ -closed sets and fuzzy δ -generalised closed sets.

Keywords : Fuzzy generalized set, Fuzzy $\hat{\Omega}$ -closed set, Fuzzy set, Fuzzy topology. **AMS Mathematics Subject Classification (2010):** 54A40, 03E72.

1 INTRODUCTION

In 1965, Zadeh [Zadeh, 1965] introduced the concept of fuzzy set by defining it in terms of mapping from a set into the unit interval on real line. In 1968, the study of fuzzy topology was investigated by Chang [Chang, 1968]. The theory of fuzzy topological space was subsequently developed by several authors. In 1998, H.Maki et al [Maki et al., 1998] introduced the concept of generalised closed sets in a fuzzy topological space. Recently, $\hat{\Omega}$ -closed set has been introduced by M.Lellis Thivagar et al. In this paper, we extend the definition of $\hat{\Omega}$ -closed set into fuzzy topological space in the name fuzzy $\hat{\Omega}$ -closed set and study its basic properties.

2 PRELIMINARIES

Now we recall some of the basic definitions in fuzzy topology.

Definition 2.1: [Zadeh, 1965] Let *X* be a non-empty set . A **fuzzy set** *A* in *X* is characterized by its membership function $\mu_A: X \rightarrow [0,1]$ and $\mu_A(x)$ is interpreted as the degree of membership of element *x* in fuzzy set *A*, for each $x \in X$. It is clear that *A* is completely determined by the set of tuples $A = \{(x, \mu_A(x)) : x \in X\}.$

Definition 2.2: [Zadeh, 1965] Let $A = \{(x, \mu_A(x)) : x \in X\}$ and $B = \{(x, \mu_A(x)) : x \in X\}$ be two fuzzy sets in *X*. Then their union $A \cup B$, intersection $A \cap B$ and complement A^C are also fuzzy sets with the membership functions defined as follows:

• $\mu_{A \lor B}(x) = \max{\{\mu_A(x), \mu_B(x)\}},$ $\forall x \in X.$

- IMIRJ, 1(2) ISSN: 2456-4613
- $\mu_{A \land B}(x) = \min \{\mu_A(x), \mu_B(x)\}, \forall x \in X.$
- $\mu_{A^c}(x) = 1 \mu_A(x), \forall x \in X.$

Further,

- (a) $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x), \forall x \in X$.
- (b) A = B iff $\mu_A(x) = \mu_B(x), \forall x \in X$.

Definition 2.3: [Palaniappan, 2002] A family $\tau \subseteq I^X$ of fuzzy sets is called a **fuzzy topology** for X if it satisfies the following three axioms:

- 1. $0, 1 \in \tau$.
- 2. $\forall A, B \in \tau \Longrightarrow A \land B \in \tau$.
- 3. $\forall (A_j)_{j \in J} \in \tau \Longrightarrow \bigvee_{j \in J} A_j \in \tau$.

The pair (X, τ) is called a fuzzy topological space (or) fts, for short. The elemets of τ are called fuzzy open sets. A fuzzy set *K* is called fuzzy closed if $K^C \in \tau$.

Definition 2.4: [Palaniappan, 2002] The closure \overline{A} and the interior A^0 of a fuzzy set A of X are defined as

$$\overline{A} = \inf \{K : A \le K, K^C \in \tau\}$$
$$A^0 = \sup \{O : \emptyset \quad A, \textcircled{O}\tau$$

respectively.

Definition 2.5: [Azad, 1981] A fuzzy set *A* of a fuzzy topological space(X, τ) is said to be **fuzzy semi-open**, if $A \leq (cl(int(A)))$ and the complement of fuzzy semi open set is fuzzy semi closed set in *X*.

Definition 2.6: [Azad, 1981] A fuzzy set *A* of a fuzzy topological space (X, τ) is said to be **fuzzy regular closed**, if A = cl(int(A)).

Definition 2.7: [Ganguly and saha, 1988] A fuzzy set *A* of a fuzzy topological space (X,τ) is said to be a **fuzzy** δ -closed set, if $A = cl_{\delta}(A)$, where

 $cl_{\delta}(A) = \wedge \{F \subseteq I^X | A \leq F, F = cl(int(F))\}.$

Definition 2.8: [Sudha et al., 2011] A fuzzy set A of a fuzzy topological space (X, τ) is said to be **fuzzy** ω -closed set, if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is fuzzy semi-open in X.

Definition 2.9: [Balasubramanian and Sundaram, 1997] A fuzzy set A of a fuzzy topological space (X, τ) is said to be **fuzzy generalized closed set**(in short, fg-closed), if $cl(A) \subseteq U$, whenever $A \subseteq U$ and is fuzzy open in X.

Definition 2.10: A fuzzy set A of a fuzzy topological space (X,τ) is said to be **fuzzy** δg -closed set, if $cl_{\delta}(A) \subseteq U$, whenever $A \subseteq U$ and U is fuzzy open in X.

Results 2.11:

- [Allam and Zahran, 1992] Every fuzzy δ -closed set is fuzzy closed set.
- [Maki et al., 1998] Every fuzzy δg closed set is fuzzy g -closed set.
- [Sudha et al., 2011] Every fuzzy closed set is fuzzy ω-closed set.
- [Sudha et al., 2011] Every fuzzy ω -closed set is fuzzy g-closed set.

3 FUZZY \hat{\Omega} -CLOSED SET

Definiition 3.1: A fuzzy set A of a fuzzy topological space (X, τ) is said to be **fuzzy**

 $\hat{\Omega}$ -closed set, if $cl_{\delta}(A) \subseteq U$, whenever $A \subseteq U$ and U is fuzzy semi- open in X. It is denoted by $\hat{\Omega}$ -closed set. Its complement is called fuzzy $\hat{\Omega}$ -open set in X.

Example 3.2: Consider $X = \{a, b, c\}$ and $\tau = \{0, 1, A, B, C, D\}$. The fuzzy sets A,B,C, and D are given in the following table.

fs(X)	a	b	С
Α	0.4	0.2	0.5
В	0.6	0.1	0.3
С	0.6	0.2	0.5
D	0.4	0.1	0.3

f Ω -closed sets are {0, 1, A', B', \dots }

Proposition 3.3: Every fuzzy δ -closed set

is $f\Omega$ -closed set.

Proof Assume that *A* is fuzzy δ -closed set in a fuzzy topological space (*X*, τ). Let $A \subseteq U$ where *U* is fuzzy semi-open. Since *A* is fuzzy δ -closed, by [5] $A = cl_{\delta}(A)$. So, *A* is $\widehat{f\Omega}$ -closed set.

Remark 3.4: The converse of the above statement is not true in general as shown by the example.

Example 3.5: Consider $X = \{a, b, c\}$ and $\tau = \{0, 1, A, B, C, D\}$. The fuzzy sets A,B,C, and D are given in the following table.

fs(X)	а	b	С
Α	0.5	0.3	0.4
В	0.1	0.2	0.6
С	0.5	0.3	0.6
D	0.1	0.2	0.4

B' is a $f\Omega$ -closed set but not a fuzzy δ -closed set.

Proposition 3.6: Every $f\Omega$ -closed set is fuzzy δg -closed set.

Proof Assume that *A* is any $f\Omega$ -closed set in a fuzzy topological space (X, τ) .Let $A \subseteq U$ where *U* is fuzzy open. By [5], *U* is fuzzy semi-open. By hypothesis, $cl_{\delta}(A) \subseteq U$. So, *A* is fuzzy δg -closed set.

Remark 3.7: The converse of the above statement is not true in general as shown by the following example.

Example3.8:

Consider $X = \{a, b, c\}$ and $\tau = \{0, 1, A, B, C\}$.

The fuzzy sets A,B, and C are given in the following table.

fs(X)	a	b	С
Α	0.2	0.1	0.4
В	0.4	0.2	0.5
С	0.5	0.3	0.5
D	0.5	0.4	0.6

D 'is a fuzzy δg -closed set but not a $\hat{f\Omega}$ -closed set.

Proposition 3.9: Every $f\Omega$ -closed set is a fuzzy ω -closed set.

Proof Assume that A is a $\widehat{f\Omega}$ -closed set in a fuzzy topological space (X, τ) . Let $A \subseteq U$ where U is fuzzy semi-open. By hypothesis, $cl_{\delta}(A) \subseteq U$. By [9], $cl(A) \subseteq U$. So, A is fuzzy ω -closed set.

Remark 3.10: The following example shows that the converse of the above result is not always true.

Example 3.11: Let $X = \{a, b, c\}$ and $\tau = \{0, 1, A, B, C, D\}$. The fuzzy sets A,B,

FUZZY $\hat{\Omega}$ – closed sets in Fuzzy topological spaces

and C are given in the following table.

а	b	С
0.1	0.3	0.4
0.5	0.6	0.7
0.6	0.7	0.8
0.7	0.8	0.9
	a 0.1 0.5 0.6 0.7	a b 0.1 0.3 0.5 0.6 0.6 0.7 0.7 0.8

C ' is fuzzy ω -closed set but not $\stackrel{\wedge}{\Omega}$ -closed set.

Remark 3.12: From the following two examples, it is known that $\hat{f\Omega}$ -closed set is

independent of fuzzy closed set.

Example 3.13: Let $X = \{a, b, c\}$

and $\tau = \{0,1, A, B, C\}$. The fuzzy sets A,B,C, and D are given in the following table.

fs(X)	а	b	С
Α	0.2	0.1	0.4
В	0.4	0.2	0.5
С	0.5	0.3	0.5
D	0.5	0.4	0.6

D is a $\widehat{f\Omega}$ -closed set but not a fuzzy closed set.

Example3.14:Let $X = \{a, b, c\}$

and $\tau = \{0,1, A, B\}$. The fuzzy sets A and B

are given in the following table.

fs(X)	a	b	С
Α	0.1	0.3	0.4
В	0.5	0.6	0.7
С	0.6	0.7	0.8
D	0.7	0.8	0.9

B ' is fuzzy closed but not $f\Omega$ -closed set. **Remark 3.15**: From the above discussions and from [1, 7, 11] the following diagram has been captured.

$$f\delta \text{-closed} \to f \hat{\Omega} \text{-closed} \to f\delta g \text{-closed}$$

$$\downarrow \downarrow \checkmark \downarrow f \text{-closed} \to f \omega \text{-closed} \to f g \text{-closed}$$

CONCLUSION

The class of $\hat{\Omega}$ - closed sets has been extended to fuzzy topological space. It has been shown that this class properly lies between the class of fuzzy δ -closed sets and fuzzy δg -closed sets.

REFERENCES

Allam A.A. and zahran A.A, (1992), *Fuzzy sets and systems*, **50**, 103-112.

Azad K.K, (1981), On fuzzy semi continuity, Fuzzy almost continuity and weakly continuity, J.Math. Anal. Appl. 82, 14-32.

Balasubramanian G. and Sundaram P, (1997), *On some generalizations of fuzzy continuous function*, **86**, 92-100.

FUZZY $\hat{\Omega}$ – closed sets in fuzzy topological spaces

Chang C.L., (1968), *Fuzzy* topological space, J.Math. Anal. Appl. **24**, pp.182-190.

Ganguly S. and Saha S, (1988), A note on δ -continuous and δ -connected sets in fuzzy set theory, Simon Stevin, **62**, 127-141.

Lellis Tivagar M., Anbuchelvi M, (2015), Note on $\hat{\Omega}$ -closed sets in fuzzy topological spaces, Mathematics Theory and Modeling, 5.

Maki H, Fukutake T, Kojima M. and Huruda H, (1998), *Generalized* closed sets fuzzy topological spaces theory and its applications, 23-36. Manoj Mishra, Thakur S.S. (2012), Fuzzy ω -continuous mappings, 2, Issue 12.

Mukherjee M.N. and Sinha S.P, (1990), *On some near-fuzzy functions between fuzzy topological space*, Fuzzy sets and system, **34**(2)), 245-254.

Palaniappan N, (2002), *Fuzzy topology*, Narosa Publications.

Sudha M, Roja E.and Uma M.K., (2011), *Slightly fuzzy w-continuous mappings*, Int.J.of Math. Anal, **5**, No.16, 779-787.

Zadeh L.A, (1965), *Fuzzy Sets*, Information and Control, **8**, 338-353.