

Volume No: 1

Issue 2

June 2017

International Multidisciplinary Innovative Research Journal -An International refereed e-journal- Science Issue ISSN: 2456-4613 IMIRI. 1(2), 2017 [1-6]

GENERALIZED CLOSED SETS IN IDEAL TOPOLOGICAL SPACES

MUTHUMARI.S¹ AND ANBUCHELVI.M²

¹M.Phil. Scholar ²Associate Professor Department of Mathematics V.V.Vanniaperumal College for Women Virudhunagar. TamilNadu, India.

ABSTRACT

The aim of this paper is to introduce a new class of generalized closed sets in ideal topological space via a- open sets.

Key-words: a- open set, * - closed set, I_a- closed sets.

2010 AMS Subject Classification : 54A05

INTRODUCTION

Levin [Levine, 1970], introduced the notion of generalized closed sets in topological space. The concept of ideal topological space was introduced by Kuratowski [Kuratowski, 19661 and Vaidyanathaswamy[Vaidyanathaswamy]. In 1999, the notion of I_g – closed set was introduced by Dontchev [Dontchev et al., 1999]. investigation Further and characterization of Ig- closed sets had been

developed by Navaneetha Krishnan and Joseph [Navaneetha Krishnan and Paulraj Joseph, 2008] Yukser, Acikgoz and Noiri [Yukser and Noiri, 2005] studied δ -I closed sets. In (1999) Ekici [Erdal Ekici, 1999] introduced the notion of a- open sets in topological space. The purpose of this paper is to define I_a- closed sets and study some basic properties.

Preliminaries:

Definition 2.1 [Kuratowski, 1966] An ideal

I on X is a collection of subsets of X satisfying the following

- 1. If $A \in I$ and $B \subseteq A$ then $B \in I$
- 2. If $A \in I$ and $B \in I$ then $A \bigcup B \in I$

Definition 2.2 [Jankovic and Hamlet, 1990] A subset of a topological space (X,τ,I) is

said to

be *-closedif $B \subseteq A$

Definition 2.3 A subset of a topological space (X, τ) is said to be

1. α -open [Njastad, 1965] if A \subseteq int (cl (int (A))).

2. semi- open [Levine, 1963] if $A \subseteq cl$ (int (A))).

3.regular open [Stone,1937] if A = int(cl(A)).

4. a-open [Erdal Ekici, 1999S] if $A \subseteq$ int (cl (int_{δ}(A))).

5. g - closed [Ravi et al., 2011] if cl (A)

 $\subseteq U$ whenever $A \subseteq U$ and U is open in X.

6. $g\delta$ – closed [Muthulakshmi et al.] if cl

(A) \subseteq U whenever A \subseteq U and U is δ –

open in X.

7. αg – closed [Maki et al., 1994] if $cl_{\alpha}(A)$

 \subseteq U whenever A \subseteq U and U is open in X. The complement of a α -open (resp.semiopen, regular-open, a-open) set is called α - closed (resp.semi-closed, regular-closed, a-closed).

Definition 2.4[Velico, 1968]A subset A of a space (X,τ) is called a δ - closed set if $A=cl_{\delta}(A)$ whenever $cl_{\delta}(A) = \{x \in X:$ $int(cl(U)) \cap A \neq \Phi, U \in \tau \text{ and } U \text{ is open in}$ X}. The complement of a δ - closed set is δ open in X.

Definition 2.5 A subset A of a space (X,τ,I) is said to be

- αIg closed [Maragatavalli and Vinothini, 2014] if A*⊆U whenever A⊆U and U is α- open in X.
- 2. Ig closed [Antony Rex Rodrig et al., 2011]if $A^* \subseteq U$ whenever $A \subseteq U$ and U is semi – open in X
- I_g closed [Navaneetha Krishnan and Paulraj Joseph, 2008] if A*⊆U whenever A⊆U and U is open in X.
- 4. 4.I_{gδ} closed [Ravi et al., 2011] if A*
 ⊆U whenever A⊆U and U is δopen in X.
- I_{rg} closed[Navaneetha Krishnan and Sivaknraj, 2010] if A*⊆U whenever A⊆U and U is regular open in X.
- I_{agg}- closed if[Ravi et al., 2011] A*⊆ U whenever A⊆U and U is αg-open in X.

Results 3.22 In a topological space (X,τ) ,

Every a- open set is semi-open
 [Jankovic and Hamlet, 1990]

- Every a-open set is α- open [Esref Hatir Seluck, 2009]
- Every regular–open set is a-open
 [Esref Hatir Seluck, 2009]
- Every δ- open set is a- open [Erdal Ekici, 1999]

3 I_a-GENERALIZED CLOSED SETS

Definition 3.1 A subset A of an ideal topological space (X, τ, I) is said to be I_a -closed if $A^* \subseteq U$ whenever $A \subseteq U$ and U is a- open in X. The complement of an I_a -closed set is an I_a - open in X.

Example 3.2Let X = {a,b,c, d}, $\tau = {\phi, {a}, {b}, {b}, {a, b}, X}$ and I ={ ϕ }. The collection { $\phi, {c,d}, {a,c,d}, {b,c,d}, X$ } is the set of all I_a- closed sets.

Theorem 3.3Every element of I is I_a – closed set in an ideal topological space X.

Proof: Let $A \in I$ be arbitrary. For any $U \in \tau$, $U \cap A \subseteq A$. By the definition of an ideal, $U \cap A \in I$. Therefore, $A^* = \varphi$. If $A \subseteq U$ for any a- open set U, then $A^* = \varphi \subseteq U$. So, A is I_a closed set in X.

Theorem 3.4 Every *-closed set is I_a closed set in an ideal topological space (X, τ ,I).

Proof Let A be any *-closed set in X. Then, $A^* \subseteq A$. Therefore, for any a-open set U of X, $A \subseteq U$ implies that $A^* \subseteq U$. Therefore, A is I_a- closed set in X. **Remark 3.5** The following example shows that there is I_a - closed set that is not a *- closed set in an ideal topological space (X, τ , I).

Example 3.6Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}$ and $I = \{\phi, \{b\}\}$. Then, $\{c\}$ is I_a - closed but not a *-closed set.

Theorem 3.7 For every subset A of an ideal topological space X, A^* is always a I_a -closed set in X.

Proof: Let $A^* \subseteq U$ where U is any a- open set in X. By [14] $(A^*)^* \subseteq A^*$. Then $(A^*)^* \subseteq$ U. Hence, A^* is I_a - closed.

Theorem 3.8 Every a- open set that is I_{a} closed is always * - closed set in an ideal topological space X.

Proof: Assume that A is both I_a – closed and a- open set in X. Clearly $A \subseteq A$ and A is a- open in X. Since A is I_a - closed set, A^* $\subseteq A$. Hence A is *- closed.

Theorem 3.9For every x is an ideal topological space in X, either $\{x\}$ is a-closed or $\{x\}^{c}$ is I_{a} – closed.

Proof. Suppose $\{x\}$ is not a-closed, then $\{x\}^c$ is not a-open. Now, the only a- open set containing $\{x\}^c$ is X. Therefore $(\{x\}^c)^* \subseteq X$, and hence $\{x\}^c$ is I_a-closed set in X.

Theorem 3.10 Every I_g^{-} -closed set is I_{a} closed in an ideal topological space X. **Proof** Let $A \subseteq U$ where U is a-open in X. By[17], every a-open set is semi open in X.Now $A \subseteq U$ where U is semi-open in X.By hypothesis, $A^* \subseteq U$ and hence A is I_a -closed in x.

Remark 3.11 The converse is not from the following example.

Example 3.12Let X={a,b,c} τ ={ φ ,{a},{b},{a,b},{a,c},X} and I={ φ ,{b}}.Then {a,b} is a I_a-closed set but not a I \hat{g} - closed set.

Theorem 3.13Every α Ig-closed set is I_aclosed in an ideal topological space X.

Proof: Suppose that A is any α Ig-closed set in X.Let A \subseteq U where U is a –open in X.By [21] every a-open set is α -open.Now A \subseteq U where U is α -open in X.By hypothesis,A* \subseteq U and hence A is I_a-closed set in X.

Remark 3.14 The followingexample establishes that the converse is not true.

Example 3.14 Let $X = \{a,b,c\}, \tau$ = { ϕ , {a}, {b}, {a,b}, {a,c}, X} and I={ ϕ }. Then, {a,b} is I_a- closed but not α Ig-closed set.

Theorem 3.16 Every I_a -closed set is I_{rg} closed in an ideal topological space X.

Proof: Assume that A is any I_a -closed set in X.Let U be any regular open set such that A \subseteq U. By [17], every regular open set is a-

open set in X.Now $A \subseteq U$ where U is a-open in X.By hypothesis, $A^* \subseteq U$, and hence A is I_{rg} -closed set in X.

Example 3.17 Let

 $\begin{aligned} X &= \{a,b,c\}, \tau = \{\phi,\{a\},\{b\},\{a,b\},X\} \text{ and } I = \{\phi\} \\ \text{Then } \{a,b\} \text{ is } I_{rg}\text{-closed set but not } I_a\text{-closed.} \end{aligned}$

Theorem 3.18 Every $I_{\alpha gg}$ -closed set is I_{a} closed in an ideal topological space X.

Proof: Assume that A is any $I_{\alpha gg}$ -closed set in X.Let $A \subseteq U$ where U is a-open set in X.[10] every a-open set is αg -open in X.By hypothesis, $A^* \subseteq U$ and hence A is I_a -closed set in X.

Example 3.19 This example shows that there is an I_a-closed set which is not a I_{α gg}closed set in X.Let X={a,b,c,d} τ ={ ϕ ,{a},{b},{a,b},{a,b,c},{a,b,d},X} and I={ ϕ }.Then {a,c} is I_a-closed but not I_{α gg}closed.

Theorem 3.20 Every I_a - closed set is $I_{g\delta}$ closed in an ideal topological space in X.

Proof: Let $A \subseteq U$ where U is δ -open set in X. By [3] every δ -open set is a-open set in X. By hypothesis, $A^* \subseteq U$ and hence A is $I_{g\delta}$ - closed.

Example3.21 Let $X = \{a,b,c,d\}, \tau$ ={ ϕ ,{a},{b},{a,b},{a,b,c},{a,b,d},X} and I= { ϕ }. Then {a,d} is a I_{g\delta}- closed but not a I_aclosed set.

CONCLUSION

The concept of generalized closed sets in an ideal topological space has been defined with the help of a-open sets. Relations among existing closed setin ideal topological space and I_a - closed set have been derived.

REFERENCES

Antony Rex Rodrig . J, Ravi. O and Nalininirmalath. A (2011). \hat{g} - closed sets -closed sets in ideal topological spaces, *Methods of functional Analysis and Topology*, **Vol .17** page no. 3,274-280.

Dontshev.J.:Ganster.M.:Noiri.T.(199
9). Unifid approach of generalized closed sets via topololgical ideals,
Math., Japan,49.page no.395-401

Erdal Ekici(1999).On *a- open* sets, A* -sets and decompositions of continuity and super continuity,Annales Univ.Sci.Budapest,page no.395-401.

Hamlett T.R.; D.Jankovi (1990)*Ideals in topological spaces and the set operator*, **Boll, Mat. Ita., 863-874.**

Jankovic. D and Hamlet .T.R, (1990). *Newtopologies from old Via ideals*, **Amer, Math. Monthly**, **97**page no.295-310. Kuratowski.K,(1966) Topology, Vol.I, Academic Press, New York,.

Levine.N,(1970).*Generalized Closed Sets in topology*,Rend.Circ.**Mat.Palermo,19(2**): page no.89-96.

Levine.N,(1963).Semi open sets and semi continuity in topological spaces,Amer.Math. Monthly,70: page no.36-41.

Maki.H.; Devi.R.; Balachandran
K.;(1994). Associated topological of generalized α- closed sets, Mem.
Fac. Sci. Kochi Univ. Math.,
15.page no.57-63.

Muthulakshmi .A, Ravi .O and Vijaya.S, g - closed sets in Topological Space.

Maragathavalli.S, and Vinothini.D (2014).α- *Generalized Closed Sets in ideal topological space*.**Issue 2 Ver.11** page no. 33-38.

Navaneethakrishnan . M and Sivaraj D,(2010).*Regular generalized closed sets in ideal topological spaces, Journal of Advanced Research in pure Mathematics*, **Vol.2 issue 3** page no,24-33.

Navaneethakrishnnan M and Pauraj Joseph (2008), g-closed sets in ideal topology spaces, Acta.Math. Hungar, 119, page no.365-371. Ravi .O; Tharmar. S.;Antony Rex Rodrigo. J.;Sangeetha. M.;(2011) Between* -closed sets and Ig International topological space, Journal of pure and applied Mathematices, Vol, Issue 2.

Ravi O. Asokan.R and Triripulam A(2015), *α*- *Generalized closed sets in topological space***Vol 3, Issume 3- A** page no.63-73.

Stone M.H,(1937)*Applications of the theory of Boolean rings to general topology*, **TAMS**, **41**.

Esref Hatir Seluck (2009) University, Education Faculty 422090, Meram-Konya, **Turkey Dec 9**. Velico N.(1968); *H- Closed sets in topological space*, amer.Narth. Soc. Transcl., 78.

Vaidyanathaswamy.R *The localization theory in set* **Proc.Indian Acad, sci.20.** page no 51-61.

Njastad O ,(1965)*Some basic class* of nearly open sets, **pacific J. math.15** page no.961-970.

Yukser S.A and T. Noitri on δ-Icontinuous function, Turk.J Math
29 (2005), page 39-51.