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ABSTRACT:

In this paper, we made an extended study on semicentral seminear-rings. It is proved that

left (right) semicentral seminear-ring, S;(R) (S, (R)) is commuting if and only if it is central

seminear-ring. Also, it is showed that a primitive left (right) semicentral seminear-ring is

additive if and only if it is orthogonal. It is observed that in a left (right) semicentral seminear-

ring, S;(R) (S-(R)) which is commuting then the left (right) semicentral quotient seminear-ring,
Si(R/N) (S,(R/N)) is orthogonal iff left (right) semicentral seminear-ring, S;(R) (S,(R)) is

orthogonal. The same concept for primitive semicentral seminear-ring is also proved.
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INTRODUCTION:
In a semiring (N, +, .) if we ignore
commutativity of + and one distributive law,

(N, +, .) is a seminear-ring. If we do not

66

stipulate the left distributive law, (N, +, .) is
a right seminear-ring. Wily G Van Hoorn
and Van Rootselaar [21] introduced the

notion of seminear-rings. Seminear-rings




are the generalization of semi-ring and near-

rings. Especially  he  discussed

homomorphisms in  seminear-rings and

obtained some interesting
Further, many people [1, 9, 10, 5, 7, 8, 20]
worked in the field of seminear-rings and
In 2018,

we [16] introduced the notion of semicentral

properties.

explored many interesting results.

seminear-rings. In this paper, we discussed

some more properties of orthogonal

elements in semicentral seminear-rings.

PRELIMINARIES:
DEFINITON: 2.1 [10]

A right seminear-ring is a non-
empty set R together with the binary
operations ‘+’ and ‘.’ such that (R, +) and
(R,.) are
(a.c) + (b.c) holds for all a, b, c in R.

In the same way, we may define a

semigroup and (a+ b).c =

left seminear-ring in which left distributive
law holds instead of right distributive law.
DEFINITION: 2.2 [7]
A right seminear-ring R is said to

have an absorbing zero if

(1) a+0=0+a=a

(i) a.0 =0.a = 0 holds for all a in

R

DEFINITION: 2.3 [7]

in the seminear-ring R

An element a
is called an

idempotent if a? = a
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DEFINITION: 2.4 [7]

An idempotent e in the seminear-
ring R is said to be central if ex = xe holds
for all x in the seminear-ring R.
DEFINITION: 2.5 [7]

A seminear-ring R is said to be
central seminear-ring if every idempotent in
R is central.

DEFINITION: 2.6 [16]

An element a in the seminear-ring R
is said to be nilpotent if there exists a
positive integer k such that a* = 0.
DEFINITION: 2.7 [16]

An idempotent e in the seminear-
ring R is called left semicentral if Re = eRe
DEFINITION: 2.8 [16]

An idempotent e in the seminear-
ring R is called right semicentral if eR =
eRe
DEFINITION: 2.9 [16]

A seminear-ring R in which every
idempotent is left (right) semicentral is
called left (right) semicentral seminear-ring.
NOTATION: 2.10 [16]

M E denotes
idempotents in the seminear-ring
R

(i) C(R) is the set of all central
idempotents in the seminear-ring
R

the set of all



(i)  S;(R) denotes the set of all left
semicentral elements in the
seminear-ring R

(iv)  S,.(R) denotes the set of all right
semicentral elements in the
seminear-ring R

PROPOSITION: 2.11 [16]

Any idempotent e in the seminear-
ring R is left semicentral if and only if 1 — e
in R is right semicentral.
PROPOSITION: 2.12 [16]

For any idempotent e in the
seminear-ring R, TFAE:

0] e is left semicentral

(i)  xe is an idempotent for all
idempotents x € R

(ili)  xe = exe, for all idempotents
x €ER

(iv)  (xe)" = (exe)", for all
idempotents x € R

COROLLARY: 2.13[16]
For any idempotent e in the
seminear-ring R, TFAE:

(1 e is right semicentral

(i) ex is an idempotent for all
idempotents x € R

(ili)  ex = exe, for all idempotents
x €ER

(iv)  (ex)™ = (exe)", for all

idempotents x € R

SOME RESULTS ON PRIMITIVE
IDEMPOTENTS IN SEMICENTRAL
SEMINEAR-RINGS
DEFINITION: 3.1

A subset S of a seminear-ring R is
called commuting if ef = feforalle, f in S
DEFINITION: 3.2

Two idempotents e, f of the
seminear-ring R are said to be orthogonal if
ef =fe=0
DEFINITION: 3.3

An idempotent e of a seminear-ring
R is said to be primitive if it cannot be
written as a sum of two non-zero orthogonal
idempotents.
NOTATION: 3.4

() M(R) denotes the set of all
primitive  idempotents in the
seminear-ring R

(i) M;R)=MMPBR)NS,(R) (ie) it
denotes the set of all left primitive
semicentral elements in the
seminear-ring R.

(i) M.(R) =MR)NS.(R) (ie) it
denotes the set of all right
primitive semicentral elements in
R.

(iv) J(R) denotes the set of all nilpotent
elements in R such that it has no
non-zero nilpotent element.

DEFINITION: 3.5
A subset S of E is said to be additive
inEifforalle,finS(e# f),e+f€EE.



PROPOSITION: 3.6

Let R be a seminear-ring. Then
S;(R) is additive in E if and only if S;(R) is
commuting and 2ef =0 for all e,f in S
(e # f)
Proof:

Suppose that S;(R) is additive in E.
Let e, f € S;(R) and e # f be arbitrary.
Since S;(R) is additive in E,e+ f €E.
Thuse+f=(e+f)>=(+f)le+f)=
e’+ef +tfetfi=e+f+ef +fe.
This givesef = —fe. Also, ef = eef =
e(ef) = e(—fe) = —(ef)e = (fe)e =
f(ee) = fe.
and also 2ef = 0.

Hence S;(R) is commuting
Conversely, suppose
S;(R) is commuting and 2ef = 0 forall e, f
in S and e#f. Now, (e+/f)?>=
e+ f)let+f)=e’+ef+fe+f?=
eteft+fet+f=e+2ef+f=e+f.
Thuse+ f€E foralle finSand e # f.
Hence S;(R) is additive in E.
COROLLARY: 3.7

Let R be a seminear-ring. Then
Sr(R) is additive in E if and only if S, (R) is
commuting and 2ef =0 for all e,f in S
(e+f)
Proof:

The proof is similar to the proof of
the above proposition: 3.6
LEMMA: 3.8

For a seminear-ring R, IFAE:

0] S;(R) is commuting
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(i)

S,(R) is commuting

(i) Si(R) =C(R)
(iv)  S.(R)=C(R)
Proof:
(1)=() follows from  proposition:

2.11.(3)=(1) and (4)=(1) are obvious.
Now to prove (1) =(3). Assume that S;(R)
Let e € S;(R) and a € R.
Then f € S;(R).

is commuting.
Let f =e+ (1—e)ae.

Now, fe=(e+ (1 —e)ae)e =e? +
(1—e)ae’=e+(1—e)ae=f and
ef =e(e +(1—e)ae) =e? +

e(l1—e)ae =e+ (e —e?)ae =e. Since

S;(R) is commuting, e=ef = fe=f =
e+ (1—e)ae and

Hence e € C(R). Thus (1) =(3) is proved.

SO ae =eae = ea.

In the similar way, (2) =(4) follows.

PROPOSITION: 3.9
Let R be a seminear-ring. Then
M, (R) is additive in E if and only if M;(R) is

orthogonal.

Proof:

Suppose M,;(R) is additive in E. Let
e, f be in M;(R)such that ef + Oand e # f.
Since M;(R) < S;(R) and M,(R) is additive
in E, it is commuting. Hence ef = fe.
take e =-ef + (e —ef). Then
ef(e—ef) =efe—ef(ef) =efe=
effe=efe—efe=0 and (e —ef)ef =
eef —ef(ef) =ef —effe=ef —

Now



e(fe)=ef —eef =ef —ef = 0. Since e
is primitive and ef # 0,e = ef. Also, let
f=fe+(f—fe). Now, fe(f—fe)=
flef) —f(ef)e=ffe—ffee=fe—
fe=0and (f —fe)fe=ffe—f(ef)e =
fe—ffee=fe—fe=0. Since f is
primitive and ef = fe # 0,f = fe. Thus,
e =ef = fe=f which is a contradiction
to e # f. Therefore, ef = fe = 0. Hence
M, (R) is orthogonal.
COROLLARY: 3.10

Let R be a seminear-ring. Then
M,.(R) is additive in E if and only if M, (R)
is orthogonal.
Proof:

The proof is similar to the proof of
the above proposition: 3.9
PROPOSITION: 3.11

Let N € J(R) be an ideal of a
seminear-ring R. If e, f € R are commuting
idempotents such that e = f € R/N then
e=f.
Proof:

Since e=f€eR/N,e—f€EN.
And, since ef = fe, we have (e — f)? =
(e—flle—f)=e’—ef —fe+[f*=
e—ef —ef+f=e—2ef +f. Also,
(e—ft=(—-Nie-N*=
(e —2ef +f)le—2ef +f)=e?—
2e%f +ef —2efe+4e’f?—2ef? +
fe—2ef*+ f?=e—2ef +ef —2ef +
def —2ef + fe—2ef + f =e—2ef +
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f =(e—f)? Therefore, (e —f)? is an
idempotent in R. Thus (e — /)2 € ENN c
ENJ(R) = {0} which gives, (e — f)*> = e —
2ef +f=0. Hence e+ f =2ef. By
multiplying it with e this yields e = ef and
by multiplying the same with f gives
f =ef. Hence e—f =ef —ef =0.
Thuse = f.
PROPOSITION: 3.12

Let N € J(R) be an ideal of R such
that idempotents in R/N can be lifted to R.
Then we have the following:

() Si(R) is commuting then
S;(R/N) is orthogonal if and
only if S;(R) is orthogonal

@)y  M;(R) is commuting then
M;(R/N) is orthogonal if and
only if M;(R) is orthogonal.

Proof:

(i) Suppose that S;(R/N) is orthogonal.

Let e,f €S/(R) and e+ f. Then

clearly é,f € S,(R/N). Assume that

e,f#0. If é=Ff, then by previous

proposition,e = f, which is a

contradiction to e # f. Since S;(R/N)

is orthogonal, éf =fe=0. This

implies ef, fe € N, which in turn, is

also in E. Thus ef,fe€ ENN c

ENJ(R) = {0}. Hence S;(R) is

orthogonal. Clearly, the converse

follows.



(i) If e in R is primitive idempotent,
then e € R/N is also primitive. Thus

the proof follows from (i).

COROLLARY: 3.13
Let N € J(R) be an ideal of R such
that idempotents in R/N can be lifted to R.
Then we have the following:
Q) S-(R) is then
S.(R/N) is orthogonal if and

commuting

only if S,.(R) is orthogonal

(i) M,.(R) is commuting then
M, (R/N) is orthogonal if and
only if M,.(R) is orthogonal.

Proof:

The proof is similar to the proof of
above proposition: 3.12
PROPOSITION: 3.14
For an idempotent e of a seminear-
ring R, TFAE:
Q) Every e € M, (R) is central.
(ii)

M, (R) is commuting

(i)  ef = fe for allfin M;(R), which
are isomorphic to e
(iv) (ef)" =(fe)" for all f in
M, (R) are isomorphic to e where
n is some positive integer.
Proof:

()=(ii) follows from the definition of
central. (ii) =(iii) =(iv) follows from the
proposition:2.12. So it is enough to prove

(iv) =(i). Suppose that the condition (iv)
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holds and assume that there exists e €
M;(R) such that e € C(R). Then ea # ae

for some a in R. Consider, f =e + ea(l —

e). Then feS(R) and e+ f. Now,
ef =e(e+ea(l—e)) =ee+
eea(l—e)=e+ea(l—e)=f and

fe= (e + ea(l — e))e =ee+
(ea — eae)e = ee + eae — eaee = e +
eae —eae = e. Thus e is isomorphic to f.
Since eR =eeR =efeR C efR C eR.
This gives eR = efR = fR S0 f is primitive
idempotent in R. Therefore, e = (fe)" #
(ef )" = f, for any positive integer n, which
is a contradiction to (iv). Hence e € C(R).
COROLLARY: 3.15
For an idempotent e of a seminear-

ring R, TFAE:

() Every e € M,.(R) is central.

(i) M,.(R) is commuting

@) ef =fe for all fin M,.(R),
which are isomorphic to e
@iv) (ef)" =(fe)" for all f in
M,(R) are isomorphic to e
where n is some positive integer.
Proof:

The proof is similar to the proof of

above proposition: 2.13& 3.14
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