International Multidisciplinary Innovative Research Journal -An International refereed e-journal

ISSN: 2456 – 4613 Volume – IV Issue - 1 November - 2019

A STUDY ON PRIMITIVE IDEMPOTENTS IN SEMICENTRAL SEMINEAR-RINGS

¹RADHA.D and RAJA LAKSHMI.C²

¹Assistant Professor, PG and Research Department of Mathematics,

²Research Scholar, PG and Research Department of Mathematics,

A.P.C.Mahalaxmi College for Women, Thoothukudi, Tamil Nadu, India.

Corresponding Author: ratharavimaths@gmail.com

ABSTRACT:

In this paper, we made an extended study on semicentral seminear-rings. It is proved that left (right) semicentral seminear-ring, $S_l(R)$ ($S_r(R)$) is commuting if and only if it is central seminear-ring. Also, it is showed that a primitive left (right) semicentral seminear-ring is additive if and only if it is orthogonal. It is observed that in a left (right) semicentral seminearring, $S_l(R)$ ($S_r(R)$) which is commuting then the left (right) semicentral quotient seminear-ring, $S_l(R/N)$ ($S_r(R/N)$) is orthogonal iff left (right) semicentral seminear-ring, $S_l(R)$ ($S_r(R)$) is orthogonal. The same concept for primitive semicentral seminear-ring is also proved.

Mathematics Subject Classification: 16Y30

Keywords:

Additive, Commuting, Left (right) primitive semicentral idempotent and Left (right) semicentral seminear-ring.

INTRODUCTION:

In a semiring (N, +, .) if we ignore commutativity of + and one distributive law, (N, +, .) is a seminear-ring. If we do not stipulate the left distributive law, (N, +, .) is a right seminear-ring. Wily G Van Hoorn and Van Rootselaar [21] introduced the notion of seminear-rings. Seminear-rings are the generalization of semi-ring and near-Especially he discussed rings. homomorphisms in seminear-rings and obtained some interesting properties. Further, many people [1, 9, 10, 5, 7, 8, 20] worked in the field of seminear-rings and explored many interesting results. In 2018, we [16] introduced the notion of semicentral seminear-rings. In this paper, we discussed properties of orthogonal some more elements in semicentral seminear-rings.

PRELIMINARIES:

DEFINITON: 2.1 [10]

A right seminear-ring is a nonempty set R together with the binary operations '+' and '.' such that (R, +) and (R,.) are semigroup and (a + b).c =(a.c) + (b.c) holds for all a, b, c in R.

In the same way, we may define a left seminear-ring in which left distributive law holds instead of right distributive law.

DEFINITION: 2.2 [7]

A right seminear-ring R is said to have an *absorbing zero* if

- (i) a + 0 = 0 + a = a
- (ii) a.0 = 0.a = 0 holds for all a in R

DEFINITION: 2.3 [7] An element *a* in the seminear-ring R is called an *idempotent* if $a^2 = a$

DEFINITION: 2.4 [7]

An idempotent e in the seminearring R is said to be *central* if ex = xe holds for all x in the seminear-ring R.

DEFINITION: 2.5 [7]

A seminear-ring R is said to be *central seminear-ring* if every idempotent in R is central.

DEFINITION: 2.6 [16]

An element *a* in the seminear-ring R is said to be *nilpotent* if there exists a positive integer *k* such that $a^k = 0$.

DEFINITION: 2.7 [16]

An idempotent e in the seminearring R is called *left semicentral* if Re = eRe

DEFINITION: 2.8 [16]

An idempotent e in the seminearring R is called *right semicentral* if eR = eRe

DEFINITION: 2.9 [16]

A seminear-ring R in which every idempotent is left (right) semicentral is called *left* (*right*) *semicentral seminear-ring*.

NOTATION: 2.10 [16]

- (i) E denotes the set of all idempotents in the seminear-ringR
- (ii) C(R) is the set of all central idempotents in the seminear-ring R

- (iii) $S_l(R)$ denotes the set of all left semicentral elements in the seminear-ring R
- (iv) $S_r(R)$ denotes the set of all right semicentral elements in the seminear-ring R

PROPOSITION: 2.11 [16]

Any idempotent e in the seminearring R is left semicentral if and only if 1 - ein R is right semicentral.

PROPOSITION: 2.12 [16]

For any idempotent *e* in the seminear-ring R, TFAE:

- (i) *e* is left semicentral
- (ii) xe is an idempotent for all idempotents $x \in \mathbb{R}$
- (iii) xe = exe, for all idempotents $x \in \mathbb{R}$
- (iv) $(xe)^n = (exe)^n$, for all idempotents $x \in \mathbb{R}$

COROLLARY: 2.13 [16]

For any idempotent *e* in the seminear-ring R, TFAE:

- (i) *e* is right semicentral
- (ii) ex is an idempotent for all idempotents $x \in \mathbb{R}$
- (iii) ex = exe, for all idempotents $x \in \mathbb{R}$
- (iv) $(ex)^n = (exe)^n$, for all idempotents $x \in \mathbb{R}$

SOME RESULTS ON PRIMITIVE IDEMPOTENTS IN SEMICENTRAL SEMINEAR-RINGS

DEFINITION: 3.1

A subset S of a seminear-ring R is called *commuting* if ef = fe for all e, f in S

DEFINITION: 3.2

Two idempotents e, f of the seminear-ring R are said to be *orthogonal* if ef = fe = 0

DEFINITION: 3.3

An idempotent e of a seminear-ring R is said to be *primitive* if it cannot be written as a sum of two non-zero orthogonal idempotents.

NOTATION: 3.4

- (i) M(R) denotes the set of all primitive idempotents in the seminear-ring R
- (ii) $M_l(R) = M(R) \cap S_l(R)$ (i.e.) it denotes the set of all left primitive semicentral elements in the seminear-ring R.
- (iii) $M_r(R) = M(R) \cap S_r(R)$ (i.e.) it denotes the set of all right primitive semicentral elements in R.
- (iv) J(R) denotes the set of all nilpotent elements in R such that it has no non-zero nilpotent element.

DEFINITION: 3.5

A subset S of E is said to be *additive* in E if for all e, f in S $(e \neq f), e + f \in E$. Let R be a seminear-ring. Then $S_l(R)$ is additive in E if and only if $S_l(R)$ is commuting and 2ef = 0 for all e, f in S $(e \neq f)$

Proof:

Suppose that $S_l(R)$ is additive in E. Let $e, f \in S_l(R)$ and $e \neq f$ be arbitrary. Since $S_l(R)$ is additive in $E, e + f \in E$. Thus $e + f = (e + f)^2 = (e + f)(e + f) =$ $e^2 + ef + fe + f^2 = e + f + ef + fe$. This gives ef = -fe. Also, ef = eef = e(ef) = e(-fe) = -(ef)e = (fe)e = f(ee) = fe. Hence $S_l(R)$ is commuting and also 2ef = 0. Conversely, suppose $S_l(R)$ is commuting and 2ef = 0 for all e, fin S and $e \neq f$. Now, $(e + f)^2 =$ $(e + f)(e + f) = e^2 + ef + fe + f^2 =$ e + ef + fe + f = e + 2ef + f = e + f. Thus $e + f \in E$ for all e, f in S and $e \neq f$. Hence $S_l(R)$ is additive in E.

COROLLARY: 3.7

Let R be a seminear-ring. Then $S_r(R)$ is additive in E if and only if $S_r(R)$ is commuting and 2ef = 0 for all e, f in S $(e \neq f)$

Proof:

The proof is similar to the proof of the above proposition: 3.6

LEMMA: 3.8

For a seminear-ring R, IFAE:

(i) $S_l(R)$ is commuting

- (ii) $S_r(R)$ is commuting
- (iii) $S_l(R) = C(R)$ (iv) $S_r(R) = C(R)$

Proof:

(1)⇒(2) follows from proposition: $2.11.(3) \Longrightarrow (1)$ and $(4) \Longrightarrow (1)$ are obvious. Now to prove (1) \Rightarrow (3). Assume that $S_1(R)$ is commuting. Let $e \in S_1(R)$ and $a \in R$. Let f = e + (1 - e)ae. Then $f \in S_l(R)$. $fe = (e + (1 - e)ae)e = e^{2} + e^{2}$ Now. $(1-e)ae^2 = e + (1-e)ae = f$ and $ef = e(e + (1 - e)ae) = e^{2} + e^{2}$ $e(1-e)ae = e + (e - e^2)ae = e.$ Since $S_l(R)$ is commuting, e = ef = fe = f =e + (1 - e)ae and so ae = eae = ea. Hence $e \in C(R)$. Thus (1) \Rightarrow (3) is proved. In the similar way, $(2) \Longrightarrow (4)$ follows.

PROPOSITION: 3.9

Let R be a seminear-ring. Then $M_l(R)$ is additive in E if and only if $M_l(R)$ is orthogonal.

Proof:

Suppose $M_l(R)$ is additive in E. Let e, f be in $M_l(R)$ such that $ef \neq 0$ and $e \neq f$. Since $M_l(R) \subseteq S_l(R)$ and $M_l(R)$ is additive in E, it is commuting. Hence ef = fe. Now take e = ef + (e - ef). Then ef(e - ef) = efe - ef(ef) = efe = effe = efe - efe = 0 and (e - ef)ef =eef - ef(ef) = ef - effe = ef - e(fe) = ef - eef = ef - ef = 0. Since eis primitive and $ef \neq 0, e = ef$. Also, let f = fe + (f - fe). Now, fe(f - fe) =f(ef) - f(ef)e = ffe - ffee = fe fe = 0 and (f - fe)fe = ffe - f(ef)e =fe - ffee = fe - fe = 0. Since f is primitive and $ef = fe \neq 0, f = fe$. Thus, e = ef = fe = f which is a contradiction to $e \neq f$. Therefore, ef = fe = 0. Hence $M_l(R)$ is orthogonal.

COROLLARY: 3.10

Let R be a seminear-ring. Then $M_r(R)$ is additive in E if and only if $M_r(R)$ is orthogonal.

Proof:

The proof is similar to the proof of the above proposition: 3.9

PROPOSITION: 3.11

Let $N \subseteq J(R)$ be an ideal of a seminear-ring R. If $e, f \in R$ are commuting idempotents such that $\overline{e} = \overline{f} \in R/N$ then e = f.

Proof:

Since $\bar{e} = \bar{f} \in R/N$, $e - f \in N$. And, since ef = fe, we have $(e - f)^2 = (e - f)(e - f) = e^2 - ef - fe + f^2 = e - ef - ef + f = e - 2ef + f$. Also, $(e - f)^4 = (e - f)^2(e - f)^2 = (e - 2ef + f)(e - 2ef + f) = e^2 - 2e^2f + ef - 2efe + 4e^2f^2 - 2ef^2 + fe - 2ef^2 + f^2 = e - 2ef + ef - 2ef + fe - 2ef$ $f = (e - f)^2$. Therefore, $(e - f)^2$ is an idempotent in R. Thus $(e - f)^2 \in E \cap N \subset E \cap J(R) = \{0\}$ which gives, $(e - f)^2 = e - 2ef + f = 0$. Hence e + f = 2ef. By multiplying it with *e* this yields e = ef and by multiplying the same with *f* gives f = ef. Hence e - f = ef - ef = 0. Thus e = f.

PROPOSITION: 3.12

Let $N \subseteq J(R)$ be an ideal of R such that idempotents in R/N can be lifted to R. Then we have the following:

- (i) $S_l(R)$ is commuting then $S_l(R/N)$ is orthogonal if and only if $S_l(R)$ is orthogonal
- (ii) $M_l(R)$ is commuting then $M_l(R/N)$ is orthogonal if and only if $M_l(R)$ is orthogonal.

Proof:

(i) Suppose that $S_l(R/N)$ is orthogonal. Let $e, f \in S_l(R)$ and $e \neq f$. Then clearly $\bar{e}, \bar{f} \in S_l(R/N)$. Assume that $e, f \neq 0$. If $\bar{e} = \bar{f}$, then by previous proposition, e = f, which is а contradiction to $e \neq f$. Since $S_l(R/N)$ is orthogonal, $\bar{e}\bar{f} = \bar{f}\bar{e} = \bar{0}$. This implies $ef, fe \in N$, which in turn, is Thus $ef, fe \in E \cap N \subset$ also in E. Hence $S_1(R)$ is $E \cap I(R) = \{0\}.$ orthogonal. Clearly, the converse follows.

(ii) If *e* in R is primitive idempotent, then $\bar{e} \in R/N$ is also primitive. Thus the proof follows from (i).

COROLLARY: 3.13

Let $N \subseteq J(R)$ be an ideal of R such that idempotents in R/N can be lifted to R. Then we have the following:

- (i) $S_r(R)$ is commuting then $S_r(R/N)$ is orthogonal if and only if $S_r(R)$ is orthogonal
- (ii) $M_r(R)$ is commuting then $M_r(R/N)$ is orthogonal if and only if $M_r(R)$ is orthogonal.

Proof:

The proof is similar to the proof of above proposition: 3.12

PROPOSITION: 3.14

For an idempotent e of a seminearring R, TFAE:

- (i) Every $e \in M_l(R)$ is central.
- (*ii*) $M_l(R)$ is commuting
- (iii) ef = fe for all f in $M_l(R)$, which are isomorphic to e
- (iv) $(ef)^n = (fe)^n$ for all f in $M_l(R)$ are isomorphic to e where n is some positive integer.

Proof:

(i) \Rightarrow (ii) follows from the definition of central. (ii) \Rightarrow (iii) \Rightarrow (iv) follows from the proposition:2.12. So it is enough to prove (iv) \Rightarrow (i). Suppose that the condition (iv)

holds and assume that there exists $e \in$ $M_1(R)$ such that $e \notin C(R)$. Then $ea \neq ae$ for some a in R. Consider, f = e + ea(1 - a)Then $f \in S_1(R)$ and $e \neq f$. e). Now. ef = e(e + ea(1 - e)) = ee + ea(1 - e)eea(1 - e) = e + ea(1 - e) = fand fe = (e + ea(1 - e))e = ee + ea(1 - e)e = ea(1 - e)ee = ea(1 - e)ea(1 - e)e = ea(1 - e)e = ea(1 - e)e =(ea - eae)e = ee + eae - eaee = e +eae - eae = e. Thus e is isomorphic to f. Since $eR = eeR = efeR \subseteq efR \subseteq eR.$ This gives eR = efR = fR so f is primitive idempotent in R. Therefore, $e = (fe)^n \neq$ $(ef)^n = f$, for any positive integer n, which is a contradiction to (iv). Hence $e \in C(R)$.

COROLLARY: 3.15

For an idempotent e of a seminearring R, TFAE:

- (i) Every $e \in M_r(R)$ is central.
- (ii) $M_r(R)$ is commuting
- (iii) ef = fe for all fin $M_r(R)$, which are isomorphic to e
- (iv) $(ef)^n = (fe)^n$ for all f in $M_r(R)$ are isomorphic to ewhere n is some positive integer.

Proof:

The proof is similar to the proof of above proposition: 2.13& 3.14

REFERENCES:

 Balakrishnan R and Perumal R (2012), Left duo seminearrings, Scientia Magna, 8(3), 115-120

- Booth G L and Groenewald N J (1998),On strongly prime nearrings,*Indian Journal of Mathematics*,40(2): 113-121.
- Dedekind R (1964), Uber die Theorie der ganzenalgebraiscenzahlen, Springer Fachmedian, 297-313.
- Dheena P (1985), On strongly regular near-rings, *Journal of the Indian Math. Soc.*, 49: 201-208.
- Henry E. Heatherly (1974), Regular Near-rings, *Journal of Indian Math.* Soc., 38: 345-354.
- Javed Ahsan (1995), Seminear-rings characterized by their s-ideals – I, Proc. Japa Acad., 71(A): 101-103.
- Javed Ahsan (1995), Seminear-rings characterized by their s-ideals – II, *Proc. Japan Acad.*, **71(A)**: 111-113.
- Perumal R and Balakrishnan R (2012), Left Bipotent Seminearrings, *International Journal of Algebra*, 6(26): 1289-95.
- Perumal R, Arulprakasam R and Radhakrishnan M (2018), A note on Ideals in Seminear-rings, IOP conf. Series: Journal of Physics: conf. series 1000(2018)012150: 1-6.
- Pilz Gunter (1983), Near-rings, North Holland, Amsterdam, 1983.
- Radha D and Kavitha M (2018),
 Pseudo Symmetric Ternary Γ -

Semiring, Proceedings on National Conference on Innovations in Mathematics (NCIM - 2018), pp19-24, ISBN: 978-81-935198-5-1.

- Radha D and Meenakshi P (2017), Some Structures of Idempotent Commutative Semigroup, International Journal of Science, Engineering and Management (IJSEM), 2(12), ISSN (Online) 2456-1304.
- Radha D and ParvathiBanu M (2018), Left Singularity and Left Regularity in Near Idempotent Γ Semigroup, *International Journal of Science, Engineering and Management (IJSEM)*, 3(4), ISSN (Online), 2456-1304.
- 14. Radha D and Raja Lakshmi C (2018), On Weakly π-subcommutative Γ-Near Rings, *Proceedings; National Conference on Innovations in Mathematics*(*NCIM-2018*), pp10-18, ISBN No.:978-81-935198-5-1.
- Raja Lakshmi C and Radha D (2018), On zero-symmetric SemicentralΓ-Near Rings, *International Journal of Science*, *Engineering and Management* (*IJSEM*), 3(4), pp571-575, ISSN (online) 2456-1304.

- Radha D and Selvi V (2017), Stable and Pseudo Stable Gamma near Rings, Proceedings on National Conference on Recent Trends in Pure and Applied Mathematics, ISBN: 978-81-935198-1-3.
- 17. Radha D and Suguna S (2018), Normality in Idempotent Commutative Γ - Semigroup, *International Journal of Science*, *Engineering and Management* (*IJSEM*),3(4), ISSN (Online) 2456-1304.
- Shabir M and Ahamed I (2007), Weakly regular Seminear-rings, International Electronic Journal of Algebra, 114-126.

- Wily G Van Hoorn and Van Rootselaar B (1976), Fundamental notions in the theory of Seminearrings, *Compositio Mathematic*, 18: 65-78.
- Weinert H J (1982), Seminear-rings, Seminear-field and their semigroup theoretical background, *Semigroup Forum*, 24: 231-254.