International Multidisciplinary Innovative Research Journal -An International refereed e-journal

ISSN: 2456 – 4613 Volume – IV Issue – 1 November -2019

ROLE OF α_1 AND α_2 NEAR RING IN BOOLEAN S-NEAR RING

¹Radha.D and Dhivya.C²

^{1,2}Assistant Professor, PG and Research Department of Mathematics, ^{1,2}A.P.C.Mahalaxmi College for Women, Thoothukudi, Tamilnadu, India.

Corresponding Author: radharavimaths@gmail.com

ABSTRACT : -

In this paper we have proved some results on Boolean S-near ring using the concepts of regular near ring, idempotents, left cancellation law etc. It is proved that N is a S-near ring iff N is boolean whenever N is regular. Every Boolean S-near ring is both α_1 and α_2 near ring with the converse in the case of α_2 near ring. Also, as a characterization theorem it is proved that a Boolean regular near ring is an S-near ring in each of the following cases (i) N is an IFP with identity (ii) Na = aNa for all $a \in N$ (iii) N is subcommutative.

Mathematics Subject Classification : 16Y30

Keywords :-

 α_1 near ring, α_2 near ring, strongly regular, subcommutativity, S_1 near ring, S_2 near ring,.

INTRODUCTION

Near rings can be thought of as generalized rings : if in a ring we ignore the commutativity of addition and one distributive law, we get a near ring. Gunter Pilz [2] "Near rings" is an extensive collection of the work done in the area of near rings.

A near ring N is a system $(N, +, \cdot)$ such that (N, +) is a group (not necessarily abelian), (N, \cdot) is a semigroup, the right distributive law holds, i.e. (x + y)z = xz + *yz* for each *x*, *y*, *z* in *N* ; and $x \cdot 0 = 0$ for every *x* in *N* [6]. A near ring *N* is an **S-near ring** if $a \in Na$ for each $a \in N$ [6]. Let *N* be a right near ring, if (i) for every *a* in *N* there exists *x* in *N* such that a = xax then we say *N* is an α_1 near ring. (ii) for every *a* in *N*^{*} there exists *x* in *N*^{*} such that x = xax then we say *N* is α_2 near ring [27].

Preliminaries

Definition 2.1 [4]

The near rings N are **boolean** if $x^2 = x$ for each $x \in N$.

Definition 2.2 [6]

A near ring *N* is defined to be **left bipotent** if $Na = Na^2$ for each *a* in *N*.

Definition 2.3 [6] A near ring N is regular if for each a in N, there exists x in N such that a = axa.

Definition 2.4 [3]

If all non zero elements of N are left(right) cancellable then we say that N fulfills the left(right) cancellation law.

Notation 2.5 [25]

E denotes the set of all idempotent of $N \ (a \in E \text{ iff } a^2 = a).$

Definition 2.6[3]

N is said to fulfill the **Insertion of Factors Property (IFP)** provided that for all a, b, n in $N, ab = 0 \Rightarrow anb = 0$. **Definition 2.7 [1]** *N* is called a P_k near ring $(P_k'$ near ring) if there exists a positive integer *k* such that $x^k N = xNx$ ($Nx^k = xNx$) for all $x \in N$.

Definition 2.8 [8]

N is said to be **subcommutative** if Na = aN for all $a \in N$.

Notation 2.9 [25]

 N^* denotes the set of all nonzero elements of N, i.e., $N^* = N - \{0\}$.

Definition 2.10 [25]

N is called an S_1 near ring (S_2 near ring) if for every $a \in N$, there exists $x \in N^*$ such that axa = xa (axa = ax).

Lemma 2.11 [4]

If N is a boolean near ring, then xy = xyx for each $x, y \in N$.

Definition 2.12 [2]

A near ring *N* is said to be **strongly** regular if for each $a \in N$, there exists an element $x \in N$ such that $a = xa^2$.

Main Results

Theorem 3.1

Let N be a reduced near ring. N is left bipotent iff N is boolean.

Proof:

Let N be left bipotent. Then $Na = Na^2$ for each a in $N \Rightarrow xa = xa^2$ for all x in N. $\Rightarrow xa - xa^2 = 0$. $\Rightarrow x(a - a^2) = 0$. $\Rightarrow a - a^2 = 0$, since N is reduced. This gives $a = a^2$. Hence *N* is boolean. Converse follows.

Theorem 3.2

Let N be a regular near ring. N is S-near ring iff N is boolean.

Proof:

Let *N* be *S*-near ring. Then $a \in Na$ for all $a \in N$. This implies a = xa for some $x \in N$. Since *N* is regular, for each $a \in N$, there exists $x \in N$ such that a = axa. This gives $a = a \cdot a = a^2$. Therefore $a = a^2$. Hence *N* is boolean. Conversely, let *N* be regular. Then for each $a \in N$, there exists $x \in N$ such that a = axa. Since *N* is boolean, $a^2 = a$. This gives $a^2 = axa$. By left cancellation law, a = xa. Therefore $a \in Na$. Hence *N* is *S*-near ring.

Theorem 3.3

Let N be boolean near ring. If N is S-near ring then N is regular.

Proof:

Let N be S-near ring. Then $a \in Na$ for all $a \in N$. This implies a = xa for some x in N. Since N is boolean, $a = a^2 = a \cdot a = axa$. Therefore a = axa. Hence N is regular.

Theorem 3.4

Let *N* be *S*-near ring. If xa = 0 then ax = 0for all $a \in N$ and for some $x \in N$.

Proof:

Let N be S-near ring. Then $a \in Na$ for all $a \in N$. This implies a = xa for some $x \in N$. Now ax = xax = 0x = 0. Hence ax = 0.

Theorem 3.5

Let *N* be *S*-near ring. If *N* is boolean, then (i) $ax \in E$ (ii) If the left cancellation law is valid in *N* then $xa \in E$ for all $a \in N$ and for some $x \in N$.

Proof:

Let *N* be *S*-near ring. Then $a \in Na$ for all $a \in N$. This implies a = xa for some *x* in *N*. Let *N* be boolean. Then $a^2 = a$ for all $a \in N$.(i) $(ax)^2 = (ax)(ax) = aax = a^2x$ (Since N is boolean). That is $(ax)^2 = ax$ and hence $ax \in E$. (ii) Consider $a(xa)^2 = a(xa)(xa) = aa(xa) = a^2(xa) = axa$ (Since *N* is boolean). Therefore $a(xa)^2 = axa$. Since the left cancellation is valid in *N*, $(xa)^2 = xa$. Thus $xa \in E$.

Theorem 3.6

Let N be subcommutative and S-near ring. If N is boolean then N is strongly regular.

Proof:

Let *N* be *S*-near ring. Then $a \in Na$ for all $a \in N$. This implies a = xa for some *x* in *N*. Since *N* is subcommutative, Na = aN. Therefore for any $x \in N$, there exists $y \in N$ such that xa = ay. This implies a = ay. Now ay = xa. $\Rightarrow aya = xaa = xa^2 \Rightarrow$

 $aa = xa^2 \Longrightarrow a^2 = xa^2 \Longrightarrow a = xa^2$ (Since

N is boolean). Hence N is strongly regular.

Theorem 3.7

Let N be S-near ring. If N is strongly regular then N is boolean.

Proof:

Let *N* be *S*-near ring. Then $a \in Na$ for all $a \in N$. This implies a = xa for some $x \in N$. Since *N* is strongly regular, for each $a \in N$, there exists an element $x \in N$ such that $a = xa^2$. This implies $a = xaa = a^2$. Therefore $a = a^2$. Hence *N* is boolean.

Theorem 3.8

Let *N* be *S*-near ring. If *N* is boolean, then *N* is α_1 near ring.

Proof:

Let *N* be *S*-near ring. Then $a \in Na$ for all $a \in N$. This implies a = xa for some *x* in *N*. Since *N* is boolean, by lemma 2.1 we have xa = xax for each $x, a \in N$. This implies a = xax. Hence *N* is α_1 near ring.

Theorem 3.9

Let *N* be *S*-near ring. *N* is boolean iff *N* is α_2 near ring.

Proof:

Let *N* be *S*-near ring. Then $x \in Nx$ for all $x \in N$. This implies x = ax for some *a* in *N*. Since *N* is boolean, $x = x^2 = xax$. Therefore x = xax. In particular x = xax for any $x, a \in N^*$. Hence *N* is α_2 near ring. Conversely, since *N* is α_2 near ring, for

every *a* in N^* there exists *x* in N^* such that x = xax. This implies $x = xx = x^2$. Therefore $x = x^2$. Hence *N* is boolean.

Theorem 3.10

Let *N* be boolean near ring. If *N* is commutative then *N* is S_1 near ring.

Proof:

Since *N* is boolean, by lemma 2.1 we have ax = axa for each $a, x \in N$ which gives xa = axa, since *N* is commutative. In particular, xa = axa for any $x \in N^*$. Hence *N* is S_1 near ring.

Theorem 3.11

Let *N* be *S*-near ring. *N* is regular iff *N* is a S_1 near ring.

Proof:

Let *N* be *S*-near ring. Then $a \in Na$ for all $a \in N$. This implies a = xa for some *x* in *N*. Since *N* is regular, for each *a* in *N*, there exists *x* in *N* such that a = axa which gives axa = xa. In particular axa = xa for any $x \in N^*$. Hence *N* is S_1 near ring. Conversely, since *N* is S_1 near ring, for every $a \in N$, there exists $x \in N^*$ such that axa = xa which gives axa = xa which gives axa = xa.

Corollary 3.12

If *N* is boolean, then *N* is S_2 near ring.

Theorem 3.13

Let N be a boolean near ring. If N is regular, then each of the following statements implies that N is an S-near ring. (i) N is an IFP near ring with identity. (ii) Na = aNa for all $a \in N$. (iii) N is subcommutative. (iv) N is zero symmetric.

Proof:

Since *N* is regular, for each $a \in N$, there exists $x \in N$ such that a = axa. (i) Let *N* be an IFP near ring with identity '1' and let $a \in N$. Since *N* is boolean, $a^2 = a \Rightarrow a^2 - a = 0 \Rightarrow (a - 1)a = 0$. Since *N* has IFP, (a - 1)xa = 0 for all $x \in N$. $\Rightarrow axa - xa = 0 \Rightarrow a - xa = 0 \Rightarrow a = xa \Rightarrow a \in$ *Na* for all $x \in N$. Hence *N* is an *S*-near ring. (ii) Since Na = aNa, for any $x \in N$, there exists $y \in N$ such that xa = aya. Now axa = a(xa) = a(aya)

 $= a^2ya = aya = xa$. Hence axa = xa. This implies a = xa. Therefore $a \in Na$. Hence *N* is an *S*-near ring. (iii) Since *N* is subcommutative, Na = aN. Therefore for any $x \in N$, there exists $y \in N$ such that xa = ay. Therefore axa = a(xa) = $a(ay) = a^2y = ay$. That is axa = ay. This implies a = ay which gives a = xa. Therefore $a \in Na$. Hence *N* is an *S*-near ring. (iv) Let *N* be zero symmetric near ring. Let $a \in N$. If $a \neq 0$, we take x = a. Then $axa = a^2a = xa$. This gives a = xa. If a = 0 then for any $x \in N$, a = 0 = xa. Hence *N* is *S*-near ring.

REFERENCE

- Balakrishnan R and Suryanarayanan S (2000). On P_k and P_k['] near-rings, Bull. Malasiyan Math., Sc. Soc. (Second Series) 23 : , 9-24.
- Dheena P and Jenila C (2012). P-Strongly Regular Near-Rings, *Commun. Korean Math. Soc.* 27, No.3, pp. 483-488.
- Gunter Pilz (1983). Near Rings, North Holland, Amsterdam.
- Hansen DJ and Jiang Luh, Boolean Near-Rings and Weak Commutativity (1989). J. Austral. Math. Soc. (Series A) 47, 103-107.
- James R.Clay and Donald A.Lawver (1969). Boolean Near-Rings, *Canad. Math. Bull.* vol. 12, no.3.
- Jat JL and Choudhary SC (1979). On Left Bipotent Near Rings, Proceedings of the Edinburgh Mathematical Society, 22, 99-107.
- Kalaiselvi M, Radha D and Suguna S (2019). r - Regular Gamma Near Rings, Journal of Emerging Technologies and Innovative Research (JETIR), Vol 6, ISSN (Online) : 2349-5162.
- 8. Karthy K and Dheena P (2001). On Unit Regular Near-Rings, *Journal of*

the Indian Math., Soc. **Vol.68**, Nos 1-4: 239-243.

- 9. Parvathi Banu M and Radha D Sided Two (2019). On Near Gamma Semigroup Idempotent Gamma Semi (TSNI Group), Journal of Emerging Technologies and Innovative Research (JETIR), Vol 6, ISSN (Online) : 2349-5162.
- Radha D and Selvi V (2017). Stable and Pseudo Stable Gamma Near Rings, Proceedings on National Conference on Recent Trends in Pure and Applied Mathematics, ISBN: 978-81-935198-1-3.
- 11. Radha D, Raja Lakshmi C and Kanmani P (2018). A Study on semicentral seminear rings, *Proceedings; National Seminar on New Dimensions in Mathematics and its Applications*, ISBN No : 978-93-5346-948-1, Page (97-106).
- Radha D and Meenakshi P (2017).
 Some Structures of Idempotent Commutative Semigroup, *International of Science, Engineering and Management* (*IJSEM*), Vol 2, ISSN (Online) 2456-1304.
- 13. Radha D and Raja Lakshmi C, On Weakly π - Subcommutative Γ -

Near Rings (2018). Proceedings on National Conference on Innovations in Mathematics (NCIM - 2018), ISBN: 978-81-935198-5-1, Page (10-18).

- 14. Radha D and Kavitha M (2018).
 Pseudo Symmetric Ternary Γ -Semiring, Proceedings on National Conference on Innovations in Mathematics (NCIM - 2018), ISBN: 978-81-935198-5-1, Page (19-24).
- Radha D and Raja Lakshmi C (2018). On Zero Symmetric Semicentral Γ Near Rings, *International Journal of Science, Engineering and Management (IJSEM)* Vol 3, ISSN (Online) 2456-1304.
- 16. Radha D, and Suguna S, (2018).
 Normality in Idempotent Commutative Γ - Semigroup, *International Journal of Science, Engineering and Management* (*IJSEM*) Vol 3 , ISSN (Online) 2456-1304.
- 17. Radha D and Parvathi Banu M (2018). Left Singulartiy and Left Regularity in Near Idempotent Γ Semigroup, *International Journal of Science, Engineering and*

Management (IJSEM) Vol 3, ISSN (Online) 2456-1304.

- 18. Radha D and Dhivya C (2019). On S
 Near Rings and S['] Near Rings with Right Bipotency, Journal of Emerging Technologies and Innovations Research (JETIR), Vol 6, ISSN (Online) : 2349-5162.
- Radha D, Vinutha M and Raja Lakshmi C (2019). A Study on GS-Near Ring, Journal of Emerging Technologies and Innovative Research (JETIR), Vol 6, ISSN (Online) : 2349-5162.
- 20. Radha D and Suguna S (2019). A Study on Normal Gamma Seminear RIngs, Journal of Emerging Technologies and Innovative Research (JETIR), Vol 6, ISSN (Online) : 2349-5162.
- 21. Radha D and Raja Lakshmi C (2019). A Study on Pseudo Commutative Seminear Rings, *Journal of Emerging Technologies* and Innovative Research (JETIR), Vol 6, ISSN (Online) : 2349-5162.
- 22. Radha D and Siva Ranjini J (2019).
 On Left Bipotent Γ Semi Near Ring, Journal of Emerging Technologies and Innovative Research (JETIR),
 Vol 6, ISSN (Online) : 2349-5162.

- 23. Radha D, Siva Ranjini J and Vinutha M (2018). P-Pseudo Symmetric Ideals in Ternary Semigroup, *Proceedings; National Seminar on New Dimensions Mathematics and its applications*, ISBN No: 978-93-5346-948-1, Page (8-15).
- 24. Radha D and Rajeswari R (2019). On Quasi Weak Commutative Semi Near Ring, International Journal of Science, Emerging and Management, Vol 4, ISSN (Online) : 2456-1304.
- 25. Silviya S, Balakrishnan R and Tamizh Chelvam T (2010). Strong S_1 near rings, *International Journal of Algebra*, Vol.4, No.14, 685-691.
- Steve Ligh (1969). On boolean nearrings, Bull. Austral. Math. Soc.vol. I, 375-379.
- 27. Uma S, Balakrishnan R and Tamizh Chelvam T (2010). α_1 , α_2 near ring, *International Journal of Algebra*, **Vol.4**, No.2, 71-79.