CLOSED SUPPORT STRONG EFFICIENT DOMINATION NUMBER OF SOME STANDARD GRAPHS UNDER ADDITION AND MULTIPLICATION

Meena ${ }^{1} \mathrm{~N}$ and Murugan ${ }^{2} \mathrm{~K}$
PG \& Research, Department of Mathematics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli - 627 010, Tamilnadu, India

Corresponding author: meena@mdthinducollege.org

Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with p points and q nodes. Let S be a $\gamma_{s e^{-}}$set of G . Let $\mathrm{v} \epsilon \mathrm{S}$. A closed support strong efficient domination number of v under addition is defined by $\sum_{u \in N[v]} \operatorname{deg}(u)$ and it is denoted by supp $\gamma_{s e}{ }^{+}[v]$. A closed support strong efficient domination number of G under addition is defined by $\sum_{v \in S} \operatorname{supp} \gamma_{s e}{ }^{+}[v]$ and it is denoted by supp $\gamma_{s e}{ }^{+}[G]$. A closed support strong efficient domination number of v under multiplication is defined by $\prod_{u \epsilon N[v]} \operatorname{deg}(u)$ and it is denoted by supp $\gamma_{s e} \times[v]$. A closed support strong efficient domination number of G under multiplication is defined by $\prod_{v \in S} \operatorname{supp} \gamma_{s e}{ }^{\times}[v]$ and it is denoted by supp $\gamma_{s e}{ }^{\times}[G]$. In this paper, closed support strong efficient domination number of some standard graphs is studied.

Keywords: domination, addition, graph, multiplication, theorem

INTRODUCTION

Throughout this paper only finite, undirected graphs without loops or multiple nodes are considered. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with p points and q nodes. The degree of any point v of a graph G is the number of
nodes incident with v and is denoted by deg (v). A subset S of $V(G)$ is called a dominating set of G if every point in $V(G)$ S is adjacent to a point in S (see [6]). The domination number of a graph G, denoted
by $\gamma(G)$, is the minimum cardinality of a dominating set of G. Sampathkumar et.al. introduced the concept of strong (weak) domination in graphs (see [11]). A subset S of $\mathrm{V}(\mathrm{G})$ is called a strong dominating set of G if for every $\mathrm{v} \in V(G)-S$ there exists a point $\mathrm{u} \in S$ such that u and v are adjacent and $\operatorname{deg}(u) \geq \operatorname{deg}(v)$. A subset S of $V(G)$ is called an efficient dominating set if for every $\mathrm{v} \in V(G),|N[v] \cap S|=1$ (see $[3,5]$). The concept of strong (weak) efficient domination in graphs was introduced by Meena et.al. (see[10]) and further studied $\mathrm{in}($ see $[7,8,9])$. A subset S of $\mathrm{V}(\mathrm{G})$ is called a strong (weak) efficient dominating set of G if for every point $v \in V(G)$, we have $\left|N_{s}[v] \cap S\right|=1\left(\left|N_{W}[v] \cap S\right|=1\right)$, where $N_{s}(v)=\{u \in V(G) ; u v \in E(G), \operatorname{deg}(u) \geq$ $\operatorname{deg}(v)\}$ and $N_{s}[v]=N_{s}(v) \cup\{v\}\left(N_{w}(v)=\right.$ $\{u \in V(G) ; u v \in E(G), \operatorname{deg}(u) \leq \operatorname{deg}(v)\}$ and $\left.N_{w}[v]=N_{w}(v) \cup\{v\}\right)$. The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient domination number of G and is denoted by $\gamma_{s e}(G)\left(\gamma_{w e}(G)\right)$. A graph G is strong efficient if there exists a strong efficient dominating set of G. Balamurugan et.al introduced the concept of closed support of a graph under addition (see [1]) and multiplication (see [2]). A closed support of a point v under addition is
defined by $\sum_{u \in N[v]} \operatorname{deg}(u)$ and it is denoted by $\operatorname{supp}[v]$. A closed support of a graph G under addition is defined by $\sum_{\mathrm{v} \in \mathrm{V}(\mathrm{G})} \operatorname{supp}[\mathrm{v}]$ and it is denoted by $\operatorname{supp}[G]$. A closed support of a point v under multiplication is defined by $\prod_{u \in N[v]} \operatorname{deg}(u)$ and is denoted by mult[v]. A closed support of a graph G under multiplication is defined by $\prod_{u \in V(G)} \operatorname{mult}[\mathrm{v}]$ and it is denoted by $m u l t[G]$. Inspired by the above definitions, the concept of a closed support strong efficient domination number of a graph under addition and multiplication are introduced in this paper. For all Graph theoretic terminologies and notations, Harary (see [4]) is followed. Following previous results are necessary for the present study.

Previous results [9]

1. For any path P_{m},
$\gamma_{s e}\left(P_{m}\right)\left\{\begin{aligned} \mathrm{n} \text { if } \mathrm{m} & =3 \mathrm{n}, \mathrm{n} \in N \\ \mathrm{n}+1 \text { if } \mathrm{m} & =3 \mathrm{n}+1, \mathrm{n} \in N \\ \mathrm{n}+2 \text { if } \mathrm{m} & =3 \mathrm{n}+2, \mathrm{n} \in N\end{aligned}\right.$
2. For any cycle $C_{3 n}, \gamma_{s e}\left(C_{3 n}\right)=\mathrm{n}, \mathrm{n} \in$ N
3. $\gamma_{s e}\left(K_{1, n}\right)=1, \mathrm{n} \in N$
4. $\gamma_{s e}\left(K_{n}\right)=1, \mathrm{n} \in N$
5. $\gamma_{s e}\left(D_{m, n}\right)=\mathrm{m}+1, \mathrm{~m} \leq \mathrm{n}, \mathrm{m}, \mathrm{n} \in N$

MAIN RESULTS

Definition 2.1: Let $G=(V, E)$ be a strong efficient graph. Let S be a $\gamma_{s e^{-}}$set of G. Let $\mathrm{v} \in \mathrm{S}$. A closed support strong efficient domination number of v under addition is defined by $\sum_{u \in N[v]} \operatorname{deg}(u)$ and it is denoted by $\operatorname{supp}_{s e}{ }^{+}[v]$.
Example 2.2: Consider the following graph G.

Fig 1
$\mathrm{S}=\left\{v_{1}, v_{5}\right\}$ is the unique $\gamma_{s e}$ - set of G.
supp $\quad \gamma_{s e}{ }^{+}\left[v_{1}\right]=\sum_{u \in N\left[v_{1}\right]} \operatorname{deg}(u) \quad=$ $\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\operatorname{deg}\left(v_{3}\right)+\operatorname{deg}\left(v_{4}\right)+$ $\operatorname{deg}\left(v_{6}\right)=13$.
suppp $\quad \gamma_{s e}{ }^{+}\left[v_{5}\right]=\sum_{u \in N\left[v_{5}\right]} \operatorname{deg}(u \quad) \quad=$ $\operatorname{deg}\left(v_{5}\right)+\operatorname{deg}\left(v_{6}\right)=4$
Definition 2.3: Let $G=(V, E)$ be a strong efficient graph. Let S be a $\gamma_{s e^{-}}$set of G . Let $\mathrm{v} \in \mathrm{S}$. A closed support strong efficient domination number of v under multiplication is defined by $\prod_{u \in N[v]} \operatorname{deg}(u)$ and it is denoted by $\operatorname{supp} \gamma_{s e}{ }^{\times}[v]$.
Example 2.4: In Fig. 1, $\operatorname{supp} \gamma_{s e} \times\left[v_{1}\right]=$ $\prod_{u \in N\left[v_{1}\right]} \operatorname{deg}(u)$
$\left.\operatorname{deg}\left(v_{1}\right) \times \operatorname{deg}\left(v_{2}\right) \times \operatorname{deg} \quad v_{3}\right) \times$ $\operatorname{deg}\left(v_{4}\right) \times \operatorname{deg}\left(v_{6}\right)=96$
supp $\quad \gamma_{s e} \times\left[v_{5}\right]=\prod_{u \in N\left[v_{5}\right]} \operatorname{deg}(u) \quad=$ $\operatorname{deg}\left(v_{5}\right) \times \operatorname{deg}\left(v_{6}\right)=3$

Definition 2.5: Let G be a strong efficient graph. Let S be a $\gamma_{s e^{-}}$set of G . A closed support strong efficient domination number of G under addition is defined by $\sum_{v \epsilon S} \operatorname{supp} \gamma_{s e}{ }^{+}[v]$ and it is denoted by $\operatorname{supp}_{\text {se }}{ }^{+}[G]$
Example 2.6: In Fig. 1, $\operatorname{supp} \gamma_{s e}{ }^{+}[G]=$ $\operatorname{supp}_{\text {se }}{ }^{+}\left[v_{1}\right]+\operatorname{supp}_{\text {se }}{ }^{+}\left[v_{5}\right]=17$
Definition 2.7: Let G be a strong efficient graph. Let S be a $\gamma_{s e}$ - set of G. A closed support strong efficient domination number of G under multiplication is defined by $\prod_{v \in S} \operatorname{supp} \gamma_{s e}{ }^{\times}[v]$ and it is denoted by $\operatorname{supp}_{s e}{ }^{\times}[G]$.
Example 2.8: In Fig. 1, supp $\gamma_{s e} \times[G]=$ $\operatorname{supp}_{\gamma_{s e}} \times\left[v_{1}\right] \times \operatorname{supp}_{\gamma_{s e}}{ }^{\times}\left[v_{5}\right]=288$.

Note 2.9: Closed support strong efficient domination number under addition of a graph G is not unique.
Example 2.10: Consider the following graph G

$S_{1}=\left\{v_{1}, v_{3}\right\}$ and $S_{2}=\left\{v_{4}, v_{6}\right\}$ are two $\gamma_{s e}-$ sets of G and $\gamma_{s e}(\mathrm{G})=2$. For S_{1}, supp $\gamma_{s e}{ }^{+}\left[v_{1}\right]=\sum_{u \in N\left[v_{1}\right]} \operatorname{deg}(u)=$ $\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\operatorname{deg}\left(v_{4}\right)+\operatorname{deg}\left(v_{5}\right)+$ $\operatorname{deg}\left(v_{6}\right)=13$.
supp $\gamma_{s e}{ }^{+}\left[v_{3}\right]=\sum_{u \in N\left[v_{3}\right]} \operatorname{deg}(u)=$ $\operatorname{deg}\left(v_{3}\right)+\operatorname{deg}\left(v_{2}\right)+\operatorname{deg}\left(v_{4}\right)=9$
supp $\gamma_{s e}{ }^{+}[G]=\sum_{v \epsilon S_{1}} \operatorname{supp} \gamma_{s e}{ }^{+}[v]=$ $\operatorname{supp}_{\text {se }}{ }^{+}\left[v_{1}\right]+\operatorname{supp}_{s_{s e}}{ }^{+}\left[v_{3}\right]=22$

For S_{2}, supp $\gamma_{s e}{ }^{+}\left[v_{4}\right]=\sum_{u \in N\left[v_{4}\right]} \operatorname{deg}(u)$ $=\operatorname{deg}\left(v_{4}\right)+\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\operatorname{deg}\left(v_{3}\right)+$ $\operatorname{deg}\left(v_{5}\right)=15$
supp $\gamma_{s e}{ }^{+}\left[v_{6}\right]=\sum_{u \in N\left[v_{6}\right]} \operatorname{deg}(u)=$ $\operatorname{deg}\left(v_{6}\right)+\operatorname{deg}\left(v_{1}\right)=5$
supp $\gamma_{s e}{ }^{+}[G]=\sum_{v \epsilon S_{2}} \operatorname{supp} \gamma_{s e}{ }^{+}[v]=$ $\operatorname{supp}_{\gamma_{s e}}{ }^{+}\left[v_{4}\right]+\operatorname{supp}_{s e}{ }^{+}\left[v_{6}\right]=20$.
Hence min supp $\gamma_{s e}{ }^{+}[G]=20$ and \max $\operatorname{supp}_{\text {se }}{ }^{+}[G]=23$.

Note 2.11: Closed support strong efficient domination number under multiplication of a graph G is not unique.

Example 2.12: Consider Fig.2,
$S_{1}=\left\{v_{1}, v_{3}\right\}$ and $S_{2}=\left\{v_{4}, v_{6}\right\}$ are two $\gamma_{s e}-$ sets of G and $\gamma_{s e}(G)=2$

For $S_{1}, \operatorname{supp} \gamma_{s e} \times\left[v_{1}\right]=\prod_{u \in N\left[v_{1}\right]} \operatorname{deg}(u)=$ $\operatorname{deg}\left(v_{1}\right) \times \operatorname{deg}\left(v_{2}\right) \times \operatorname{deg}\left(v_{4}\right) \times \operatorname{deg}\left(v_{5}\right) \times$ $\operatorname{deg}\left(v_{6}\right)=72$
supp $\gamma_{s e}{ }^{\times}\left[v_{3}\right]=\prod_{u \in N\left[v_{3}\right]} \operatorname{deg}(u)=$ $\operatorname{deg}\left(v_{3}\right) \times \operatorname{deg}\left(v_{2}\right) \times \operatorname{deg}\left(v_{4}\right)=24$
$\operatorname{supp} \gamma_{s e}{ }^{\times}[G]=\prod_{v \in S_{1}} \operatorname{supp} \gamma_{s e}{ }^{\times}[v]=\operatorname{supp}$ $\gamma_{s e} \times\left[v_{1}\right] \times$ supp $\gamma_{s e} \times\left[v_{3}\right]=1728$.
For S_{2}, supp $\gamma_{s e}{ }^{\times}\left[v_{4}\right]=\prod_{u \in N\left[v_{4}\right]} \operatorname{deg}(u)$ $=\operatorname{deg}\left(v_{4}\right) \times \operatorname{deg}\left(v_{1}\right) \times \operatorname{deg}\left(v_{2}\right) \times \operatorname{deg}\left(v_{3}\right) \times$ $\operatorname{deg}\left(v_{5}\right)=192$
supp $\gamma_{s e}{ }^{\times}\left[v_{6}\right]=\prod_{u \in N\left[v_{6}\right]} \operatorname{deg}(u)=$ $\operatorname{deg}\left(v_{6}\right) \times \operatorname{deg}\left(v_{1}\right)=4$
supp $\gamma_{s e}{ }^{\times}[G]=\prod_{v \in S_{2}} \operatorname{supp} \gamma_{s e} \times[v]=$ $\operatorname{supp}_{\text {se }}{ }^{\times}\left[v_{4}\right] \times$ supp $\gamma_{s e}{ }^{\times}\left[v_{6}\right]=768$.

Here min supp $\gamma_{s e}{ }^{\times}[G]=768$ and \max supp $_{s e} \times[G]=1728$.

Remark 2.13: Let G be a connected strong efficient graph with a $\gamma_{s e^{-}}$set S. Since $S \subset$ $\mathrm{V}(\mathrm{G})$, $\quad \operatorname{supp} \gamma_{\text {se }}{ }^{+}[G]<\operatorname{supp}[G]$ and $\operatorname{supp}_{\gamma_{s e}} \times[G]<\operatorname{mult}[G]$
Theorem 2.14: Let $\mathrm{G}=P_{3 n}, n \in N$. Then
i. $\operatorname{supp} \gamma_{s e}{ }^{+}[G]=6 \mathrm{n}-2$ and
ii. $\quad \operatorname{supp}_{s e} \times[G]=2\left(8^{n-1}\right)$

Proof: Let $\mathrm{G}=P_{3 n,} n \in N$. Let $\mathrm{V}(\mathrm{G})$ $=\quad\left\{v_{i} ; 1 \leq i \leq 3 n\right\} . \quad$ Then $\quad \mathrm{S}$ $=\left\{v_{2}, v_{5}, v_{8,}, \ldots, v_{3 n-4}, v_{3 n-1}\right\}$ is the unique $\gamma_{s e^{-}}$set of G. $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{3 n}\right)=1$ and $\operatorname{deg}\left(v_{i}\right)=2,2 \leq \mathrm{i} \leq 3 \mathrm{n}-1$.
i. $\operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{2}\right]=\operatorname{deg}\left(v_{2}\right)+\operatorname{deg}\left(v_{1}\right)+$ $\operatorname{deg}\left(v_{3}\right)=5$
For $\mathrm{i}=5,8, \ldots, 3 \mathrm{n}-4$, supp $\gamma_{s e}{ }^{+}\left[v_{i}\right]=$ $\operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{i-1}\right)+\operatorname{deg}\left(v_{i+1}\right)=6$
supp $\gamma_{s e}{ }^{+}\left[v_{3 n-1}\right]=\operatorname{deg}\left(v_{3 n-1}\right)+$ $\operatorname{deg}\left(v_{3 n-2}\right)+\operatorname{deg}\left(v_{3 n}\right)=5$

Hence supp $\gamma_{s e}{ }^{+}[G]=\operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{2}\right]+$ $\sum_{i=1}^{n-2} \operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{3 i+2}\right]+\operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{3 n-1}\right]$ $=5+(n-2) 6+5=6 n-2$.
ii. supp $\gamma_{s e}{ }^{\times}\left[v_{2}\right]=\operatorname{deg}\left(v_{2}\right) \times$ $\operatorname{deg}\left(v_{1}\right) \times \operatorname{deg}\left(v_{3}\right)=4$
For $\mathrm{i}=5,8, \ldots, 3 \mathrm{n}-4$, supp $\gamma_{s e}{ }^{\times}\left[v_{i}\right]=$ $\operatorname{deg}\left(v_{i}\right) \times \operatorname{deg}\left(v_{i-1}\right) \times \operatorname{deg}\left(v_{i+1}\right)=8$
supp $\gamma_{\text {se }} \times\left[v_{3 n-1}\right]=\operatorname{deg}\left(v_{3 n-1}\right) \times$ $\operatorname{deg}\left(v_{3 n-2}\right) \times \operatorname{deg}\left(v_{3 n}\right)=4$.
Hence supp $\gamma_{s e}{ }^{\times}[G]=\operatorname{supp} \gamma_{s e}{ }^{\times}\left[v_{2}\right] \times$ $\prod_{i=1}^{n-2} . \operatorname{supp} \gamma_{s e}{ }^{\times}\left[v_{3 i+2}\right] \times \operatorname{supp} \gamma_{s e}{ }^{\times}\left[v_{3 n-1}\right]$ $=4 \times 8^{n-2} \times 4=2\left(8^{n-1}\right)$.

Theorem 2.15: Let $\mathrm{G}=P_{3 n+1}, n \in N$. Then
i. $\quad \operatorname{supp}_{s e^{+}}[G]=6 \mathrm{n}+2$ and
ii. $\quad \operatorname{supp}_{s e}{ }^{\times}[G]=8^{n}$

Proof: Let $\mathrm{G}=P_{3 n+1}, n \in N$. Let $\mathrm{V}(\mathrm{G})$
$=\left\{v_{i} ; 1 \leq i \leq 3 n+1\right\}$.
$S_{1}=\left\{v_{1}, v_{3}, v_{6}, \ldots, v_{3 n-3}, v_{3 n}\right\}$ and $S_{2}=$
$\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{3 n-1}, v_{3 n+1}\right\}$ are two distinct
$\gamma_{s e^{-}}$sets of $\operatorname{G} \cdot \operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{3 n+1}\right)=1$ and $\operatorname{deg}\left(v_{i}\right)=2,2 \leq \mathrm{i} \leq 3 \mathrm{n}$.
Consider S_{1}. (Proof is similar for S_{2})
i. $\quad \operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{1}\right]=\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)$ $=3$
For $\mathrm{i}=3,6, \ldots, 3 \mathrm{n}-3, \operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{i}\right]=$ $\operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{i-1}\right)+\operatorname{deg}\left(v_{i+1}\right)=6$
$\operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{3 n}\right]=\operatorname{deg}\left(v_{3 n}\right)+\operatorname{deg}\left(v_{3 n-1}\right)+$ $\operatorname{deg}\left(v_{3 n+1}\right)=5$

Hence supp $\gamma_{s e}{ }^{+}[G]=\operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{1}\right]+$ $\sum_{i=1}^{n-1} \operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{3 i}\right]+\operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{3 n}\right]=3$ $+(\mathrm{n}-1) 6+5=6 \mathrm{n}+2$.
ii. $\quad \operatorname{supp} \gamma_{s e}{ }^{\times}\left[v_{1}\right]=\operatorname{deg}\left(v_{1}\right) \times \operatorname{deg}\left(v_{2}\right)$ $=2$

For $\mathrm{i}=3,6, \ldots, 3 \mathrm{n}-3, \operatorname{supp} \gamma_{s e}{ }^{\times}\left[v_{i}\right]=$ $\operatorname{deg}\left(v_{i}\right) \times \operatorname{deg}\left(v_{i-1}\right) \times \operatorname{deg}\left(v_{i+1}\right)=8$
supp $\quad \gamma_{s e}{ }^{\times}\left[v_{3 n}\right]=\operatorname{deg}\left(v_{3 n}\right) \times$ $\operatorname{deg}\left(v_{3 n-1}\right) \times \operatorname{deg}\left(v_{3 n+1}\right)=4$
supp $\gamma_{s e}{ }^{\times}[G]=\operatorname{supp} \quad \gamma_{s e}{ }^{\times}\left[v_{1}\right] \times$ $\prod_{i=1}^{n-1} \operatorname{supp} \gamma_{s e}{ }^{\times}\left[v_{3 i}\right] \times \operatorname{supp} \gamma_{s e}{ }^{\times}\left[v_{3 n}\right]=$ $2 \times 8^{n-1} \times 4=8^{n}$.

Hence supp $\gamma_{\text {se }}{ }^{+}[G]=6 \mathrm{n}+2$ and $\operatorname{supp}_{s{ }_{s e}}{ }^{\times}[G]=8^{n}$.
Theorem 2.16: Let $\mathrm{G}=P_{3 n+2}, n \in N$. Then
i. $\quad \operatorname{supp}_{\mathrm{se}_{s}}{ }^{+}[G]=6(\mathrm{n}+1)$ and
ii. $\quad \operatorname{suppr}_{s e}{ }^{\times}[G]=4\left(8^{n}\right)$

Proof: Let $\mathrm{G}=P_{3 n+2}, n \in N$. Let $\mathrm{V}(\mathrm{G})$
$=\left\{v_{i} ; 1 \leq i \leq 3 n+2\right\}$. Then S $=\left\{v_{1}, v_{3}, v_{6}, \ldots, v_{3 n}, v_{3 n+2}\right\}$ is the unique $\gamma_{s e^{-}}$set of G. $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{3 n+2}\right)=1$ and $\operatorname{deg}\left(v_{i}\right)=2,2 \leq \mathrm{i} \leq 3 \mathrm{n}+1$.
i. $\quad \operatorname{supp}_{\text {se }_{s e}}+\left[v_{1}\right]=\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)=$
3. For $\mathrm{i}=3,6, \ldots, 3 \mathrm{n}$, supp $\gamma_{s e}+\left[v_{i}\right]=$ $\operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{i-1}\right)+\operatorname{deg}\left(v_{i+1}\right)=6$
supp $\gamma_{s e}{ }^{+}\left[v_{3 n+2}\right]=\operatorname{deg}\left(v_{3 n+2}\right)+$ $\operatorname{deg}\left(v_{3 n+1}\right)=3$
Hence supp $\gamma_{s e}{ }^{+}[G]=\operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{1}\right]+$ $\sum_{i=1}^{n} \operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{3 i}\right]+\operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{3 n+2}\right]=3$ $+6 \mathrm{n}+3=6(\mathrm{n}+1)$.
ii. $\quad \operatorname{supp} \gamma_{s e} \times\left[v_{1}\right]=\operatorname{deg}\left(v_{1}\right) \times \operatorname{deg}\left(v_{2}\right)$ $=2$. For $\mathrm{i}=3,6, \ldots, 3 \mathrm{n}$, supp $\gamma_{s e}{ }^{\times}\left[v_{i}\right]=$ $\operatorname{deg}\left(v_{i}\right) \times \operatorname{deg}\left(v_{i-1}\right) \times \operatorname{deg}\left(v_{i+1}\right)=8$.
supp $\gamma_{s e}{ }^{\times}\left[v_{3 n+2}\right]=\operatorname{deg}\left(v_{3 n+2}\right) \times$ $\operatorname{deg}\left(v_{3 n+1}\right)=2$
Hence $\operatorname{supp} \gamma_{s e}{ }^{\times}[G]=\operatorname{supp} \gamma_{s e} \times\left[v_{1}\right] \times$ $\prod_{i=1}^{n} \operatorname{supp} \gamma_{s e}{ }^{\times}\left[v_{3 i}\right] \times \operatorname{supp} \gamma_{s e}{ }^{\times}\left[v_{3 n+2}\right]=$ $2 \times 8^{n} \times 2=4\left(8^{n}\right)$.Hence $\operatorname{supp} \gamma_{s e}{ }^{+}[G]=$ $6 n+2$ and supp $\gamma_{s e} \times[G]=4\left(8^{n}\right)$.
Theorem 2.17: Let $\mathrm{G}=C_{3 n}, n \in N$. Then
i. $\quad \operatorname{supp} \gamma_{s e}{ }^{+}[G]=6 \mathrm{n}$ and
ii. $\quad \operatorname{supp}_{s e}{ }^{+}[G]=8^{n}$

Proof: Let $\mathrm{G}=C_{3 n}, n \in N$. Let $\mathrm{V}(\mathrm{G})$ $=\left\{v_{i} ; 1 \leq i \leq 3 n\right\}$. Then $S_{1}=$
$\left\{\quad v_{1}, v_{4}, v_{7}, \ldots, v_{3 n-2}\right\}, S_{2}=$
$\left\{\quad v_{2}, v_{5}, v_{8}, \ldots, v_{3 n-1}\right\}$ and $S_{3} \quad=$ $\left\{v_{3}, v_{6}, v_{9}, \ldots, v_{3 n}\right\}$ are three distinct $\gamma_{s e}-$ sets of G. $\operatorname{deg}\left(v_{i}\right)=2,1 \leq \mathrm{i} \leq 3$ n.Consider $S_{1}=\left\{v_{1}, v_{4}, v_{7}, \ldots, v_{3 n-2}\right\}$. (Proof is similar for S_{2} and S_{3})
i. For $\mathrm{i}=1,4,7, \ldots 3 \mathrm{n}-2$, supp $\gamma_{\text {se }}{ }^{+}\left[v_{i}\right]=\operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{i-1}\right)+$ $\operatorname{deg}\left(v_{i+1}\right)=6$
Hence supp $\gamma_{s e}{ }^{+}[G] \quad=$ $\sum_{i=1}^{n} \operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{3 i-2}\right]=6 n$
ii. For $\mathrm{i}=1,4,7, \ldots 3 \mathrm{n}-2$, supp $\gamma_{\text {se }}{ }^{\times}\left[v_{i}\right]=\operatorname{deg}\left(v_{i}\right) \times \operatorname{deg}\left(v_{i-1}\right) \times$ $\operatorname{deg}\left(v_{i+1}\right)=8$
Hence supp $\gamma_{s e}{ }^{\times}[G] \quad=$ $\prod_{i=1}^{n} \operatorname{supp} \gamma_{s e}{ }^{\times}\left[v_{3 i-2}\right]=8^{n}$.

Hence $\operatorname{supp} \gamma_{s e}{ }^{+}[G]=6 \mathrm{n}$ and $\operatorname{supp} \gamma_{s e}{ }^{\times}[G]$ $=8^{n}$.

Theorem 2.18: Let $\mathrm{G}=K_{1, n}, n \in N$. Then
i. $\quad \operatorname{supp}_{s e}{ }^{+}[G]=2 \mathrm{n}$ and
ii. $\quad \operatorname{supp} \gamma_{s e} \times[G]=\mathrm{n}$

Proof: Let $\mathrm{G}=K_{1, n}, n \in N$. Let $\mathrm{V}(\mathrm{G})$ $=\left\{v, v_{i} ; 1 \leq i \leq n\right\}$ where v is the central point. Then $S=\{\mathrm{v}\}$ is the unique $\gamma_{s e^{-}}$set of G. $\operatorname{deg}(v)=\mathrm{n}$ and $\operatorname{deg}\left(v_{i}\right)=1,1 \leq i \leq n$
i. $\operatorname{supp} \gamma_{s e}{ }^{+}[v]=\operatorname{deg}(v)+$

$$
\sum_{i=1}^{n} \operatorname{deg}\left[v_{i}\right]=\mathrm{n}+\mathrm{n}(1)=2 \mathrm{n}
$$

Hence supp $\gamma_{s e}{ }^{+}[G]=\operatorname{supp} \gamma_{s e}{ }^{+}[v]=2 \mathrm{n}$
ii. supp $\gamma_{s e} \times[v]=\operatorname{deg} v \times$
$\prod_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=\mathrm{n} \times 1^{n}=\mathrm{n}$
Hence $\operatorname{supp} \gamma_{s e}{ }^{\times}[G]=\operatorname{supp} \gamma_{s e}{ }^{\times}[v]=\mathrm{n}$
Theorem 2.19: Let $\mathrm{G}=K_{n}, \quad n \in N$. Then
i. $\quad \operatorname{supp}_{s e}{ }^{+}[G]=n(n-1)$ and
ii. $\quad \operatorname{supp}_{s e} \times[G]=(n-1)^{n}$

Proof: Let $\mathrm{G}=K_{n}, n \in N$. Let $v_{i} ; 1 \leq i \leq n$ be the points of G. Then $S_{i}=\left\{v_{i}\right\}, 1 \leq i \leq$ n are n distinct $\gamma_{s e^{-}}$setsof G. $\operatorname{deg}\left(v_{i}\right)=\mathrm{n}-$ $1,1 \leq i \leq n$.

Consider the set S_{i} (Proof is similar for the other sets)
i. $\quad \operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{i}\right]=\sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=n(n$ $-1)$. Hence supp $\gamma_{s e}{ }^{+}[G]=\operatorname{supp} \gamma_{s e}{ }^{+}\left[v_{i}=\right.$ $n(n-1)$
ii. \quad supp $\gamma_{s e}{ }^{\times}\left[v_{i}\right]=\prod_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)$ $=(n-1)^{n}$. Hence supp $\gamma_{s e}{ }^{\times}[G]=$ $\operatorname{supp} \gamma_{s e}{ }^{\times}\left[v_{i}\right]=(n-1)^{n}$

Hence supp $\gamma_{s e}{ }^{+}[G]=n(n-1)$ and $\operatorname{supp}_{\text {se }{ }^{\times}[G]=(n-1)^{n}, ~}$

Remark 2.20: Let G be a nontrivial connected strong efficient graph on $\mathrm{n} \geq 2$ points. Then $1 \leq \operatorname{supp}_{\gamma_{s e}}{ }^{+}[G] \leq n(n-$ 1)and $1 \leq \operatorname{supp}_{s e}{ }^{\times}[G] \leq(n-1)^{n}$.

Theorem 2.21: Let $\mathrm{G}=D_{m, n}, \mathrm{~m} \geq \mathrm{n}$ and m , $\mathrm{n} \in \mathrm{N}$. Then
i. \quad supp $\gamma_{s e}{ }^{+}[G]=(n+1)^{2}+2 m+$ $n+1$ and
ii. $\quad \operatorname{supp}_{\text {se }}{ }^{\times}[G]=(m+1)(n+1)^{n+1}$

Proof: Let $\mathrm{G}=D_{m, n}, \mathrm{~m} \geq \mathrm{n}$. Let $\mathrm{V}(\mathrm{G})$ $=\left\{u, u_{i}, v, v_{j} ; 1 \leq i \leq m, 1 \leq j \leq n\right\}$ Let $\mathrm{E}(\mathrm{G})=\left\{\mathrm{uv}, u u_{i}, v v_{j} ; 1 \leq i \leq m, 1 \leq i \leq n\right\}$.
Then $S=\left\{u, v_{j} ; 1 \leq j \leq n\right\}$ is the unique $\gamma_{s e^{-}}$set of G. $\operatorname{deg}(\mathrm{u})=\mathrm{m}+1, \operatorname{deg}(\mathrm{v})=\mathrm{n}+$ $1, \operatorname{deg}\left(u_{i}\right)=\operatorname{deg}\left(v_{j}\right)=1,1 \leq i \leq m, 1 \leq$ $j \leq n$.
$\operatorname{supp} \gamma_{\text {se }}{ }^{+}[u]=\operatorname{deg}(u)+\sum_{i=1}^{m} \operatorname{deg}\left(u_{i}\right)+$ $\operatorname{deg}(v)=\mathrm{m}+1+\mathrm{m}+\mathrm{n}+1=2 \mathrm{~m}+\mathrm{n}+2$
For $\mathrm{j}=1,2, \ldots, \mathrm{n}, \operatorname{supp} \gamma_{s e}{ }^{+}\left(v_{j}\right)=\operatorname{deg}\left(v_{j}\right)+$ $\operatorname{deg}(v)=\mathrm{n}+2$
supp $\gamma_{s e}{ }^{+}[G]=\operatorname{supp} \gamma_{s e}{ }^{+}[u]+$ $\sum_{j=1}^{n} \operatorname{supp} \gamma_{s e}{ }^{+}\left(v_{j}\right)=2 \mathrm{~m}+\mathrm{n}+2+\mathrm{n}(\mathrm{n}+2)$
$=(n+1)^{2}+2 m+n+1$
supp $\gamma_{s e}{ }^{\times}[u]=\operatorname{deg}(u) \times \prod_{i=1}^{m} \operatorname{deg}\left(u_{i}\right) \times$ $\operatorname{deg}(v)=(\mathrm{m}+1)(\mathrm{n}+1)$
For $\mathrm{j}=1,2, \ldots, \mathrm{n}, \quad$ supp $\gamma_{s e}{ }^{\times}\left[v_{j}\right]=$ $\operatorname{deg}\left(v_{j}\right) \times \operatorname{deg}(v)=\mathrm{n}+1$
supp $\gamma_{s e}{ }^{\times}[G]=\quad$ supp $\gamma_{s e}{ }^{\times}[u] \times$ $\prod_{j=1}^{n} \operatorname{supp} \gamma_{s e}{ }^{\times}\left[v_{j}\right]=(\mathrm{m}+1)(\mathrm{n}+$ 1) $(\mathrm{n}+1)^{n}=(m+1)(n+1)^{n+1}$

REFERENCE

1. Balamurugan S, Anitha M and Karnan C (2019). Closed Support of a Graph Under Addition, International Journal of Mathematics Trends and Technology, 65(5):120-122.
2. Balamurugan S, Anitha M, Karnan C and Palanikumar P (2019). Closed Support of a Graph Under Multiplication, International Journal of Mathematics Trends and Technology, 65(5):129-133.
3. Bange DW, Barkauskas AE and Slater PJ (1988). Efficient dominating sets in graphs, Application of Discrete Mathematics SIAM, Philadelphia, 189-199.
4. Harary F (1969). Graph Theory, Addison - Wesley
5. Harary F, Haynes TW and Slater PJ (1998). Efficient and excess domination in graphs, J.Combin. Math. Combin. Comput., 2683-95.
6. Haynes TW, Stephen Hedetmiemi T and Slater PJ (1998). Fundamentals of domination in graphs, Advanced Topics, Marce; Dekker, Inc, NewYork.
7. Meena N (2016). Further Results on

Sum of Strong Efficient Domination Number and Chromatic Number, International Journal of Innovative Science, Engineering \& Technology, 3(11):300-304.
8. Meena N (2014). Strong Efficient Domination Number of Inflated Graphs of Some Standard Graphs, International Journal of Scientific and Innovative Mathematical Research, 2(5):435-440.
9. Meena N, Subramanian A, and Swaminathan V (2013). Strong efficient domination and strong
independent saturation number of graphs, International Journal of Mathematics and Soft Computing, 3(2):41-48
10. Meena N, Subramanian A, and Swaminathan V (2014). Strong Efficient Domination in Graphs, International Journal of Innovative Science, Engineering \& Technology, 1(4):172-177.
11. Sampath KE and Pushpa Latha L (1996). Strong Weak domination and domination balance in a graph, Discrete Math., 161:235-242

