International Multidisciplinary Innovative Research Journal -An International refereed e-journal

ISSN: 2456 – 4613 Volume – VI Issue - 2 May - 2022

CLOSED SUPPORT STRONG EFFICIENT DOMINATION NUMBER OF SOME STANDARD GRAPHS UNDER ADDITION AND MULTIPLICATION

Meena¹ N and Murugan² K PG & Research, Department of Mathematics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli - 627 010, Tamilnadu, India

Corresponding author: meena@mdthinducollege.org

ABSTRACT

Let G = (V, E) be a graph with p points and q nodes. Let S be a γ_{se} - set of G. Let $v \in S$. A closed support strong efficient domination number of v under addition is defined by $\sum_{u \in N[v]} \deg(u)$ and it is denoted by $\sup \gamma_{se}^{+}[v]$. A closed support strong efficient domination number of G under addition is defined by $\sum_{v \in S} \operatorname{supp} \gamma_{se}^{+}[v]$ and it is denoted by $\sup \gamma_{se}^{+}[G]$. A closed support strong efficient domination number of v under multiplication is defined by $\prod_{u \in N[v]} \deg(u)$ and it is denoted by $\sup \gamma_{se} \times [v]$. A closed support strong efficient domination number of v under multiplication is defined by $\prod_{u \in N[v]} \deg(u)$ and it is denoted by $\sup \gamma_{se} \times [v]$. A closed support strong efficient domination number of support strong efficient domination is defined by $\prod_{v \in S} \sup \gamma_{se} \times [v]$ and it is denoted by $\sup \gamma_{se} \times [v]$. In this paper, closed support strong efficient domination number of some standard graphs is studied.

Keywords: domination, addition, graph, multiplication, theorem

INTRODUCTION

Throughout this paper only finite, undirected graphs without loops or multiple nodes are considered. Let G = (V, E) be a graph with p points and q nodes. The degree of any point v of a graph G is the number of nodes incident with v and is denoted by deg (v). A subset S of V(G) is called a dominating set of G if every point in V(G) – S is adjacent to a point in S (see [6]). The domination number of a graph G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. Sampathkumar et.al. introduced the concept of strong (weak) domination in graphs (see [11]). A subset S of V(G) is called a strong dominating set of G if for every $v \in V(G) - S$ there exists a point $u \in S$ such that u and v are adjacent and deg(u) \geq deg(v). A subset S of V(G) is called an efficient dominating set if for every $v \in V(G)$, $|N[v] \cap S| = 1$ (see [3, 5]). The concept of strong (weak) efficient domination in graphs was introduced by Meena et.al. (see[10]) and further studied in(see [7, 8, 9]). A subset S of V(G) is called a strong (weak) efficient dominating set of G if for every point $v \in V(G)$, we have $|N_{s}[v] \cap S| = 1$ ($|N_{W}[v] \cap S| = 1$), where $N_{s}(v) = \{u \in V(G); uv \in E(G), \deg(u) \geq v\}$ $\deg(v)$ and $N_s[v] = N_s(v) \cup \{v\}(N_w(v) =$ $\{u \in V(G); uv \in E(G), \deg(u) \le \deg(v)\}$ and $N_w[v] = N_w(v) \cup \{v\}$). The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient domination number of G and is denoted by $\gamma_{se}(G)(\gamma_{we}(G))$. A graph G is strong efficient if there exists a strong efficient dominating set of G. Balamurugan et.al introduced the concept of closed support of a graph under addition (see [1]) and multiplication (see [2]). A closed support of a point v under addition is

defined by $\sum_{u \in N[v]} deg(u)$ and it is denoted by supp[v]. A closed support of a graph G under addition is defined by $\sum_{v \in V(G)} supp[v]$ and it is denoted by supp[G]. A closed support of a point v is under multiplication defined by $\prod_{u \in N[v]} deg(u)$ and is denoted by mult[v]. A closed support of a graph G under multiplication is defined by $\prod_{u \in V(G)} mult[v]$ and it is denoted by mult[G]. Inspired by the above definitions, the concept of a closed support strong efficient domination number of a graph under addition and multiplication are introduced in this paper. For all Graph theoretic terminologies and notations. Harary (see [4]) is followed. Following previous results are necessary for the present study.

Previous results [9]

- 1. For any path P_m ,
 - $\gamma_{se}(P_m) \begin{cases} n \text{ if } m = 3n, n \in N \\ n + 1 \text{ if } m = 3n + 1, n \in N \\ n + 2 \text{ if } m = 3n + 2, n \in N \end{cases}$
- 2. For any cycle C_{3n} , $\gamma_{se}(C_{3n}) = n$, $n \in N$

3.
$$\gamma_{se}(K_{1,n}) = 1, n \in N$$

- 4. $\gamma_{se}(K_n) = 1, n \in N$
- 5. $\gamma_{se}(D_{m,n}) = m + 1, m \le n, m, n \in N$

MAIN RESULTS

Definition 2.1: Let G = (V, E) be a strong efficient graph. Let S be a γ_{se} - set of G. Let v ϵ S. A closed support strong efficient domination number of v under addition is defined by $\sum_{u \in N[v]} \deg(u)$ and it is denoted by $supp \gamma_{se}^+[v]$.

Example 2.2: Consider the following graph G.

Fig 1

S = { v_1 , v_5 } is the unique γ_{se} - set of G.

 $\gamma_{se}^{+}[v_1] = \sum_{u \in N[v_1]} \deg(u)$ supp $\deg(v_1) + \deg(v_2) + \deg(v_3) + \deg(v_4) +$ $\deg(v_6) = 13.$

suppp $\gamma_{se}^+[v_5] = \sum_{u \in N[v_5]} \deg(u) =$ $\deg(v_5) + \deg(v_6) = 4$

Definition 2.3: Let G = (V,E) be a strong efficient graph. Let S be a γ_{se} - set of G. Let v ϵ S. A closed support strong efficient of domination number under v multiplication is defined by $\prod_{u \in N[v]} \deg(u)$ and it is denoted by $supp \gamma_{se} \times [v]$.

Example 2.4: In Fig. 1, $supp \gamma_{se} \times [v_1] =$ $\prod_{u \in N[v_1]} \deg(u)$

deg $(v_1) \times$ deg $(v_2) \times$ deg $v_3) \times$ $deg(v_4) \times deg(v_6) = 96$

 $\gamma_{se}^{\times}[v_5] = \prod_{u \in N[v_s]} \deg(u)$ supp $\deg(v_5) \times \deg(v_6) = 3$

Definition 2.5: Let G be a strong efficient graph. Let S be a γ_{se} - set of G. A closed support strong efficient domination number of G under addition is defined by $\sum_{v \in S} \operatorname{supp} \gamma_{se}^+[v]$ and it is denoted by $supp \gamma_{se}^{+}[G]$

Example 2.6: In Fig. 1, supp $\gamma_{se}^+[G] =$ $supp\gamma_{se}^{+}[v_1] + supp\gamma_{se}^{+}[v_5] = 17$

Definition 2.7: Let G be a strong efficient graph. Let S be a γ_{se} - set of G. A closed support strong efficient domination number of G under multiplication is defined by $\prod_{v \in S} \operatorname{supp} \gamma_{se}^{\times}[v]$ and it is denoted by $supp\gamma_{se}^{\times}[G].$

Example 2.8: In Fig. 1, supp $\gamma_{se} \times [G] =$ $supp\gamma_{se}^{\times}[v_1] \times supp\gamma_{se}^{\times}[v_5] = 288.$

Note 2.9: Closed support strong efficient domination number under addition of a graph G is not unique.

Example 2.10: Consider the following graph G

 $S_1 = \{v_1, v_3\}$ and $S_2 = \{v_4, v_6\}$ are two γ_{se} sets of G and γ_{se} (G) = 2. For S_1 , $supp \gamma_{se}^+[v_1] = \sum_{u \in N[v_1]} \deg(u) =$ $\deg(v_1) + \deg(v_2) + \deg(v_4) + \deg(v_5) +$ $\deg(v_6) = 13.$ $supp \quad \gamma_{se}^+[v_3] = \sum_{u \in N[v_2]} \deg(u)$ = $\deg(v_3) + \deg(v_2) + \deg(v_4) = 9$ $supp \gamma_{se}^+[G] = \sum_{v \in S_1} supp \gamma_{se}^+[v] =$ $suppy_{se}^+[v_1] + suppy_{se}^+[v_3] = 22$ For S_2 , $supp \gamma_{se}^+[v_4] = \sum_{u \in N[v_4]} deg(u)$ $= \deg(v_4) + \deg(v_1) + \deg(v_2) + \deg(v_3) +$ $\deg(v_5) = 15$ $supp \quad \gamma_{se}^+[v_6] = \sum_{u \in N[v_6]} \deg(u)$ = $\deg(v_6) + \deg(v_1) = 5$ $supp \ \gamma_{se}^+[G] = \sum_{v \in S_2} supp \ \gamma_{se}^+[v] =$ $supp\gamma_{se}^{+}[v_4] + supp\gamma_{se}^{+}[v_6] = 20.$ Hence min supp $\gamma_{se}^+[G] = 20$ and max $supp \gamma_{se}^+[G] = 23.$ Note 2.11: Closed support strong efficient domination number under multiplication of a graph G is not unique. Example 2.12: Consider Fig.2, $S_1 = \{v_1, v_3\}$ and $S_2 = \{v_4, v_6\}$ are two γ_{se} sets of G and $\gamma_{se}(G) = 2$ For S_1 , $supp \gamma_{se} \times [v_1] = \prod_{u \in N[v_1]} \deg(u) =$ $\deg(v_1) \times \deg(v_2) \times \deg(v_4) \times \deg(v_5) \times$ $deg(v_6) = 72$ $supp \gamma_{se} \times [v_3] = \prod_{u \in N[v_2]} deg(u)$ =

 $\deg(v_3) \times \deg(v_2) \times \deg(v_4) = 24$

 $supp \gamma_{se}^{\times}[G] = \prod_{v \in S_1} supp \gamma_{se}^{\times}[v] = supp$ $\gamma_{se}^{\times}[v_1] \times \operatorname{supp} \gamma_{se}^{\times}[v_3] = 1728.$ For S_2 , supp $\gamma_{se} \times [v_4] = \prod_{u \in N[v_4]} \deg(u)$ $= \deg(v_4) \times \deg(v_1) \times \deg(v_2) \times \deg(v_3) \times$ $deg(v_5) = 192$ $supp \gamma_{se}^{\times}[v_6] = \prod_{u \in N[v_6]} \deg(u)$ = $deg(v_6) \times deg(v_1) = 4$ $supp \ \gamma_{se}^{\times}[G] = \prod_{v \in S_2} supp \ \gamma_{se}^{\times}[v] =$ $suppy_{se}^{\times}[v_4] \times suppy_{se}^{\times}[v_6] = 768.$ Here min supp $\gamma_{se}^{\times}[G] = 768$ and max $supp \gamma_{se}^{\times}[G] = 1728.$ **Remark 2.13:** Let G be a connected strong efficient graph with $a\gamma_{se}$ - set S. Since S \subset $supp \gamma_{se}^+[G] < supp[G]$ and V(G), $supp \gamma_{se}^{\times}[G] < mult[G]$ **Theorem 2.14:** Let $G = P_{3n}$, $n \in N$. Then $supp\gamma_{se}^+[G] = 6n - 2$ and i. $supp \gamma_{se}^{\times}[G] = 2(8^{n-1})$ ii. **Proof:** Let $G = P_{3n}$, $n \in N$. Let V(G) $\{v_i; 1 \le i \le 3n\}.$ Then S $= \{v_2, v_5, v_{8_1}, \dots, v_{3n-4}, v_{3n-1}\}$ is the unique γ_{se} - set of G. deg (v_1) = deg (v_{3n}) = 1 and $\deg(v_i) = 2, 2 \le i \le 3n - 1.$ i. $supp \gamma_{se}^{+}[v_2] = deg(v_2) + deg(v_1) +$ $deg(v_3) = 5$ For i = 5, 8, ..., 3n - 4, supp $\gamma_{se}^+ [v_i] =$ $\deg(v_i) + \deg(v_{i-1}) + \deg(v_{i+1}) = 6$ $supp \ \gamma_{se}^{+}[v_{3n-1}] = \deg (v_{3n-1}) +$ $\deg(v_{3n-2}) + \deg(v_{3n}) = 5$

Hence supp $\gamma_{se}^+[G] = supp \gamma_{se}^+[v_2] +$ $\sum_{i=1}^{n-2} \operatorname{supp} \gamma_{se}^{+} [v_{3i+2}] + \operatorname{supp} \gamma_{se}^{+} [v_{3n-1}]$ = 5 + (n-2)6 + 5 = 6n - 2.ii. supp $\gamma_{se} \times [v_2] = \deg(v_2) \times$ $deg(v_1) \times deg(v_3) = 4$ For i = 5, 8, ..., 3n - 4, $supp \gamma_{se} \times [v_i] =$ $\deg(v_i) \times \deg(v_{i-1}) \times \deg(v_{i+1}) = 8$ $supp \quad \gamma_{se} \times [v_{3n-1}] = deg \quad (v_{3n-1}) \times v_{se}$ $\deg(v_{3n-2}) \times \deg(v_{3n}) = 4.$ Hence supp $\gamma_{se}^{\times}[G] = supp \gamma_{se}^{\times}[v_2] \times$ $\prod_{i=1}^{n-2} \operatorname{supp} \gamma_{se} \times [v_{3i+2}] \times \operatorname{supp} \gamma_{se} \times [v_{3n-1}]$ $= 4 \times 8^{n-2} \times 4 = 2(8^{n-1}).$ **Theorem 2.15:** Let $G = P_{3n+1}, n \in N$. Then $supp\gamma_{se}^+[G] = 6n + 2$ and i. $supp \gamma_{se} \times [G] = 8^n$ ii. **Proof:** Let $G = P_{3n+1}$, $n \in N$. Let V(G) $= \{v_i; 1 \le i \le 3n + 1\}$. $S_1 = \{ v_1, v_3, v_6, \dots, v_{3n-3}, v_{3n} \}$ and $S_2 =$ $\{v_2, v_5, v_8, \dots, v_{3n-1}, v_{3n+1}\}$ are two distinct γ_{se} - sets of G.deg $(v_1) = \text{deg}(v_{3n+1}) = 1$ and $\deg(v_i) = 2, 2 \le i \le 3n.$ Consider S_1 . (Proof is similar for S_2) $supp \gamma_{se}^+[v_1] = \deg(v_1) + \deg(v_2)$ i. = 3For i = 3, 6, ..., 3n - 3, supp $\gamma_{se}^+[v_i] =$ $\deg(v_i) + \deg(v_{i-1}) + \deg(v_{i+1}) = 6$ $suppy_{se}^{+}[v_{3n}] = \deg(v_{3n}) + \deg(v_{3n-1}) +$ $\deg(v_{3n+1}) = 5$

Hence supp $\gamma_{se}^+[G] = supp \gamma_{se}^+[v_1] +$ $\sum_{i=1}^{n-1} \operatorname{supp} \gamma_{se}^{+} [v_{3i}] + \operatorname{supp} \gamma_{se}^{+} [v_{3n}] = 3$ +(n-1)6+5=6n+2.ii. $supp\gamma_{se}^{\times}[v_1] = deg(v_1) \times deg(v_2)$ = 2For i = 3,6,...,3n - 3,supp $\gamma_{se}^{\times}[v_i]$ = $\deg(v_i) \times \deg(v_{i-1}) \times \deg(v_{i+1}) = 8$ $\gamma_{se}^{\times}[v_{3n}] = \deg(v_{3n}) \times$ supp $\deg(v_{3n-1}) \times \deg(v_{3n+1}) = 4$ $supp \ \gamma_{se}^{\times}[G] = supp \ \gamma_{se}^{\times}[v_1] \times$ $\prod_{i=1}^{n-1} \operatorname{supp} \gamma_{se}^{\times} [v_{3i}] \times \operatorname{supp} \gamma_{se}^{\times} [v_{3n}] =$ $2 \times 8^{n-1} \times 4 = 8^n$. Hence supp $\gamma_{se}^+[G] = 6n + 2$ and $supp \gamma_{se}^{\times}[G] = 8^n$. **Theorem 2.16:** Let $G = P_{3n+2}, n \in N$. Then $supp\gamma_{se}^+[G] = 6(n+1)$ and i. ii. $supp\gamma_{se}^{\times}[G] = 4(8^n)$ **Proof:** Let $G = P_{3n+2}$, $n \in N$. Let V(G) $= \{v_i; 1 \le i \le 3n + 2\}$. Then S $= \{ v_1, v_3, v_6, \dots, v_{3n}, v_{3n+2} \}$ is the unique γ_{se} - set of G. deg $(v_1) = deg(v_{3n+2}) = 1$ and $\deg(v_i) = 2, 2 \le i \le 3n + 1.$ i. $suppy_{se}^{+}[v_1] = deg(v_1) + deg(v_2) =$ 3. For i = 3, 6,..., 3n, $supp \gamma_{se}^+[v_i] =$ $\deg(v_i) + \deg(v_{i-1}) + \deg(v_{i+1}) = 6$ $supp \ \gamma_{se}^{+}[v_{3n+2}] = \deg (v_{3n+2}) +$ $\deg(v_{3n+1}) = 3$ Hence supp $\gamma_{se}^+[G] = supp \gamma_{se}^+[v_1] +$ $\sum_{i=1}^{n} \operatorname{supp} \gamma_{se}^{+} [v_{3i}] + \operatorname{supp} \gamma_{se}^{+} [v_{3n+2}] = 3$ +6n+3=6(n+1).

 $supp \gamma_{se}^{\times}[v_1] = \deg(v_1) \times \deg(v_2)$ ii. = 2. For i = 3,6,...,3n, supp $\gamma_{se} \times [v_i]$ = $\deg(v_i) \times \deg(v_{i-1}) \times \deg(v_{i+1}) = 8.$ $supp \quad \gamma_{se} \times [v_{3n+2}] = deg \quad (v_{3n+2}) \times deg$ $\deg(v_{3n+1}) = 2$ Hence $supp \gamma_{se}^{\times}[G] = supp \gamma_{se}^{\times}[v_1] \times$ $\prod_{i=1}^{n} \operatorname{supp} \gamma_{se}^{\times}[v_{3i}] \times \operatorname{supp} \gamma_{se}^{\times}[v_{3n+2}] =$ $2 \times 8^n \times 2 = 4(8^n)$. Hence $supp \gamma_{se}^+[G] =$ 6n + 2 and $suppy_{se} \times [G] = 4(8^n)$. **Theorem 2.17:** Let $G = C_{3n}$, $n \in N$. Then $supp \gamma_{se}^+[G] = 6n$ and i. $supp \gamma_{se}^{+}[G] = 8^{n}$ ii. **Proof:** Let $G = C_{3n}$, $n \in N$. Let V(G) $\{v_i; 1 \le i \le 3n\}$. Then $S_1 =$ = { $v_1, v_4, v_7, \dots, v_{3n-2}$ }, S_2 = $v_2, v_5, v_8, \dots, v_{3n-1}$ and S_3 { = $\{v_3, v_6, v_9, \dots, v_{3n}\}$ are three distinct γ_{se} sets of G. deg(v_i) = 2, $1 \le i \le 3n$.Consider $S_1 = \{v_1, v_4, v_7, \dots, v_{3n-2}\}$. (Proof is similar for S_2 and S_3) For $i = 1, 4, 7, \dots 3n - 2$, i. $supp \gamma_{se}^{+}[v_i] = \deg(v_i) + \deg(v_{i-1}) +$ $\deg(v_{i+1}) = 6$ $\gamma_{se}^+[G]$ Hence *supp* = $\sum_{i=1}^{n} \operatorname{supp} \gamma_{se}^{+} [v_{3i-2}] = 6n$ For $i = 1, 4, 7, \dots 3n - 2$, ii. $supp \gamma_{se}^{\times}[v_i] = \deg(v_i) \times \deg(v_{i-1}) \times$ $deg(v_{i+1}) = 8$ Hence $\gamma_{se} \times [G]$ supp = $\prod_{i=1}^n \operatorname{supp} \gamma_{se}^{\times} [v_{3i-2}] = 8^n.$

Hence $supp \gamma_{se}^+[G] = 6n$ and $supp \gamma_{se}^{\times}[G]$ $= 8^{n}$. **Theorem 2.18:** Let $G = K_{1,n}$, $n \in N$. Then $supp \gamma_{se}^+[G] = 2n$ and i. $supp\gamma_{se} \times [G] = n$ ii. **Proof:** Let $G = K_{1,n}$, $n \in N$. Let V(G) $= \{v, v_i; 1 \le i \le n\}$ where v is the central point. Then S = {v} is the unique γ_{se} - set of G. deg(v) = n and deg(v_i) = 1, 1 $\leq i \leq n$ $supp \gamma_{se}^+[v] = \deg(v) +$ i. $\sum_{i=1}^{n} \deg[v_i] = n + n(1) = 2n$ Hence supp $\gamma_{se}^+[G] = \text{supp } \gamma_{se}^+[v] = 2n$ $supp \quad \gamma_{se}^{\times}[v] = \deg v \times$ ii. $\prod_{i=1}^{n} \deg(v_i) = n \times 1^n = n$ Hence $supp \gamma_{se}^{\times}[G] = supp \gamma_{se}^{\times}[v] = n$ **Theorem 2.19:** Let $G = K_n$, $n \in N$. Then $supp \gamma_{se}^+[G] = n(n-1)$ and i. $supp\gamma_{se}^{\times}[G] = (n-1)^n$ ii. **Proof:** Let $G = K_n$, $n \in N$. Let v_i ; $1 \le i \le n$ be the points of G. Then $S_i = \{v_i\}, 1 \le i \le$ *n* are n distinct γ_{se} - setsof G. deg (v_i) = n - $1, 1 \leq i \leq n$. Consider the set S_i (Proof is similar for the other sets) $supp \gamma_{se}^+[v_i] = \sum_{i=1}^n \deg(v_i) = n(n)$ i. - 1). Hence supp $\gamma_{se}^+[G] = \text{supp } \gamma_{se}^+[v_i =$ n(n-1) $supp \quad \gamma_{se}^{\times}[v_i] = \prod_{i=1}^n \deg(v_i)$ ii.

11. $supp \quad \gamma_{se} [v_i] = \prod_{i=1}^n \deg(v_i)$ = $(n-1)^n$. Hence $supp \quad \gamma_{se} [G] =$ $supp \gamma_{se} [v_i] = (n-1)^n$ Hence supp $\gamma_{se}^+[G] = n (n - 1)$ and $supp \gamma_{se}^{\times}[G] = (n-1)^n$

Remark 2.20: Let G be a nontrivial connected strong efficient graph on $n \ge 2$ $1 \leq supp \gamma_{se}^+[G] \leq n(n - 1)$ points. Then 1) and $1 \leq supp \gamma_{se}^{\times}[G] \leq (n-1)^n$.

Theorem 2.21: Let $G = D_{m,n}$, $m \ge n$ and m, $n \in N$. Then

 $supp \gamma_{se}^{+}[G] = (n+1)^{2} + 2m +$ i. n + 1 and

 $supp \gamma_{se} \times [G] = (m+1)(n+1)^{n+1}$ ii.

Proof: Let $G = D_{m,n}$, $m \ge n$. Let V(G) $= \{ u, u_i, v, v_i ; 1 \le i \le m, 1 \le j \le n \}$ Let $E(G) = \{uv, uu_i, vv_i; 1 \le i \le m, 1 \le i \le n\}.$ Then $S = \{u, v_i; 1 \le j \le n\}$ is the unique γ_{se} - set of G. deg (u) = m + 1, deg (v) = n + 1, deg $(u_i) = \deg(v_i) = 1, 1 \le i \le m, 1 \le i \le m$ $j \leq n$. $supp \gamma_{se}^+[u] = \deg(u) + \sum_{i=1}^m \deg(u_i) +$ $\deg(v) = m + 1 + m + n + 1 = 2m + n + 2$ For j = 1, 2, ..., n, supp $\gamma_{se}^+(v_i) = \deg(v_i) +$ $\deg(v) = n + 2$ $supp \gamma_{se}^{+}[G] = supp \gamma_{se}^{+}[u]$ + $\sum_{i=1}^{n} \operatorname{supp} \gamma_{se}^{+}(v_{i}) = 2m + n + 2 + n(n + 2)$ $=(n+1)^2+2m+n+1$ $supp \gamma_{se} \times [u] = \deg (u) \times \prod_{i=1}^{m} \deg(u_i) \times$ $\deg(v) = (m+1)(n+1)$ For j = 1,2,...,n, supp $\gamma_{se} \times [v_i] =$ $deg(v_i) \times deg(v) = n + 1$

$$supp \quad \gamma_{se}^{\times}[G] = supp \quad \gamma_{se}^{\times}[u] \times$$
$$\prod_{j=1}^{n} supp \quad \gamma_{se}^{\times}[v_j] = (m+1)(n+1)^n + (m+1)(n+1)^{n+1}$$

REFERENCE

- 1. Balamurugan S, Anitha M and Karnan C (2019). Closed Support of a Graph Under Addition, International Journal of Mathematics Trends and Technology, 65(5):120-122.
- 2. Balamurugan S, Anitha M, Karnan C and Palanikumar P (2019). Closed of Support а Graph Under Multiplication, International Journal of *Mathematics* Trends and Technology, 65(5):129-133.
- 3. Bange DW, Barkauskas AE and Slater PJ (1988). Efficient dominating sets in graphs, Application of Discrete Mathematics SIAM, Philadelphia, 189-199.
- 4. Harary F (1969). Graph Theory, Addison – Wesley
- 5. Harary F, Haynes TW and Slater PJ (1998). Efficient and excess domination in graphs, J.Combin. Math. Combin. Comput., 2683-95.
- 6. Haynes TW, Stephen Hedetmiemi T and Slater PJ (1998). Fundamentals of domination in graphs, Advanced Topics, Marce; Dekker, Inc, NewYork.

- Meena N (2016). Further Results on Sum of Strong Efficient Domination Number and Chromatic Number, *International Journal of Innovative Science, Engineering & Technology*, 3(11):300-304.
- Meena N (2014). Strong Efficient Domination Number of Inflated Graphs of Some Standard Graphs, *International Journal of Scientific and Innovative Mathematical Research*, 2(5):435-440.
- Meena N, Subramanian A, and Swaminathan V (2013). Strong efficient domination and strong

independent saturation number of graphs, *International Journal of Mathematics and Soft Computing*, 3(2):41-48

- 10. Meena N, Subramanian A, and Swaminathan V (2014). Strong Efficient Domination in Graphs, *International Journal of Innovative Science, Engineering & Technology*, 1(4):172-177.
- 11. Sampath KE and Pushpa Latha L (1996). Strong Weak domination and domination balance in a graph, *Discrete Math.*, 161:235-242