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ABSTRACT

The concepts of Boolean like near-ring and Special Boolean like near-ring are introduced
by Clay, James.R and Lawver, Donald, A., during 1969. In this paper, we have discussed the
concept of weak commutative property in a Boolean like near-ring. If R is a weak commutative
near ring, (ab)” = a" b" for all a,b in R and for n < 1 and (a-a?) (b-b%)c = 0 for every a,b,c in a
Boolean like near-ring. Also, it is proved that, every near-ring is reduced if it has Weak
Commutativity and also satisfies (*, IFP) property. If R be a weak commutative Boolean Like
near-ring and S be a commutative subset with multiplicatively closed. Then we define a relation N
on RxS by (r1, s1)~(r2, s1) if there exists an element s € S such that s(r1s2 — r2s1) = 0. Then N
is an equivalence relation. And also define binary operation + an on S—!R as,
r1 rz_ risainesy gnd -2 =2 Then S-1R is a commutative Boolean Like near-ring with

s2 s2 5182 s2 S2 S1S2

identity and also a Weak Commutative near-ring.
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PRELIMINARIES
Definition 2.1
A non-empty set R with two binary operations "+" (addition) and " - " (multiplication) is
satisfying the following axioms is called a right near-ring
(i) (R,+)isa(R,-) isasemigroup.

(i) Forall xy,z, inR, (x +y).z = x.z + y. z(right distributive law)
(iii)  group (not necessarily abelian).
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Definition 2.2
A near ring R is called a zero-symmetric if ab = 0 implies ba = 0,where a, b € R.
Note 2.3
Inaright near-ring R, 0.a = 0 Va € R.
If (R, +) is an abelian group, then (R, +,7) is called a semi-ring.
Definition 2.4
A near-ring R is subset H if R such that
(i (H,+) is a subgroup of (R, +)
(i) RHSH
(i) HRCSH
If H satisfies (i) and (ii) then it is called left R-subgroup of R. If H satisfies (i) and(iii) then
H is called a right R-subgroup of R.
Definition 2.5
A near-ring R is said to reduced if R has no non-zero nilpotent elements.
Definition 2.6
Let R be a near-ring. R is said to satisfy intersection of factors property (IFP) if ab =
0 = anb = 0foralln € R, where a,b € R.
Definition 2.7
R is said to have strong IFP, if for all ideals | of R, ab€l = anb €l forall n€R
Definition 2.8
A near-ring R is said to be regular near-ring if for every a in R there exists x in R such
that a = axa.
Definition 2.9
A right near ring R is said to be Weak commutative if xyz = xzy Vx,y,z € R
Definition 2.10
A right near-ring (R, +,") is called a Boolean-like near ring if
() 2a=0Va€Rand
(i) (a+b—ab) =abVabeR
THE ROLE OF WEAK COMMUTATIVITY IN BOOLEAN LIKE NEAR-RING

Lemma 3.1

Let R be a weak commutative near-ring R. Then (ab) = a®b"V a,b € RandVn > 1
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Proof:
Leta,b €R
Then (ab)? = (ab)(ab) = (aba)b
= (aab) (R is weak commutative)
= a2h?
Assume that (ab) = amb™
No (ab)t! = (ab)™ab
= ambmab = (amb™ a)b
= (am) (R is weak commutative)

= gmtlpmtl

Thus  (ab) = amb™V a,b € R and for all integer m > 1
Lemma 3.2

Let R be a weak commutative Boolean like near-ring. Then
a’b + ab? = ab + (ab)?V a,b € R.

Proof:
a’b + ab? = aab + abb
= aba + abb
=ab(a + b)
=ab(a+ b — ab + ab)
= (a + b — ab) + (ab)?
= ab + (ab)? (R is Boolean like near-ring)
a’b + ab? = ab + (ab)?V a,b € R.
Lemma 3.3
In a weak commutative Boolean like near-ring (R, +,)
Then (a +a*)(b+ b*)c =0 Va,b,c €R.

Proof: (a+a?)(b+b¥)c ={a(b+ b2+ a*b+ b?)}c
=a((b+ b?) + a%(b + b?)c

IMIRJ-V(2) ISSN: 2456 — 4613

=ac(b + b2) +a%(b+b*)} (Risweak commutative)

=c{a(b+ b?) + a?(b + b?)}
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= c{ab + ab? + a?bh + a? b?}
= c{ab + ab + (ab)? + a?b?} (using Lemma 3.2)
= c{2ab + 2a?b?}
=0 (R is Boolean like near-ring)

Lemma 3.4
In a weak commutative Boolean like near-ring R,

(a—a?)(b—b?)c=0Va,b,c €ER

Proot (@ - a))b - b)c = {(b - b?) — 2(b — b))
= {(b — b?) — a%(b — b?)c}
= {(b — b?) —a?(b — b?)} (R is weak commutative)
= {(b — b?) — a?(b — b))}
= {ab — ab? — a?b + a?bh?}
= {ab — ab — (ab)? + a?b?} (using Lemma 3.2)
=0

Hence proved.
Lemma 3.5

Let R be a weak commutative Boolean like near-ring. Let S be a commutative subset of Rwhich is
multiplicatively closed. Define a relation N on R x S by (r1, s1)~(r2, s2) iff there existsan element
SES
Proof:
() Let (r,s) ER XS
Since rs—rs =0
=>((rs—rs)=0foralltes
Hence ‘~’ is reflexive.
(i) Let(ri,s1)~(rz2 s2)
Then there exists an element s € S such that
(risz —r2s1) =0
= (rzs1—1ri1s2) =0
such that s(r1s2 — rz2s1) = 0. Then N is an equivalence relation.

« )

Hence ‘~’is symmetric.
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(i) Let (r1,s1)~(r2,52) and (rz, s2)~ (73, S3)

Then there exists p,q € S such that

(risz2 —r2s1) = 0and (r2s3 —13s2) =0
= ps3(risz — r251) = 0 = gsi1(rzs3 — 1r352)
= (risz —1251)3 = 0 = (7283 — r352)s1 (R- weak commutative)
= (risz —r2s1)3 = 0 = pq(rzs3 — 13s2)s1
= (115253 — 125153) = 0 = p(r25351 — 135251)
= pq (15253 — 125153+725351 — 135251) = 0
= (115352 — 125153 + 125153 — 135152) = 0 (S is commutative)
= (ri1s352 — 135152) = 0
= (ris3—1351)2=0
= pq s2(ris3 —r3s1) =0 (R is weak commutative)
= (ris3—13s1) =0 wherer =pgs; €S

= (T‘l, S1)~(T‘3, 53)
Hence ‘~’ is transitive.
Hence the lemma.
Theorem 3.6

Let R be a weak commutative Boolean like near -ring. Let S be a commutative subset
of R which is also multiplicatively closed. Define binary operation ‘ 4+’ and on s—IR as follows.

1 rz _nisztrzst gnd 1, % =" Then s—1R is a commutative Boolean like near- ring with
S1 S2 S1S2 S1 S2 S1S2

identity.

Proof:

Let us first prove that “ + "’ and ‘-’ are well-defined.

F F
Let > ="1and = = 2, then there exists t1, t> € S such that
s1 sh s2 sty

(ris —=rms)y=0 . (1)
1 1
aNd £(725" —725") = 0 eeoeeeieceece e (2)
2 2
Now, titz] (ris2 + r2s1)s's’ — (r's’ + r's')sisz2] )
12 12 12
= titz[ r1S28's’ + r2s18's — r's'si1s2 — r's's152]
12 12 12 21

= tit2[ r1s's2s’ — r'sis2s’ + 1ra2s'sis’ — 1 52515'1] (S is commutative subset)
172 1 2 2 1 2
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= titz2[( 718’ — 1r's1)s2s + (rz2s’ — 1 52)515]

11 2 2 2 1
= tit2( r1S — r's1)s2s + titza(r2s’ — 1 s2)s18

11 2 2 2 1
= t1(r1s’ — r's1)tzs2s + t2(r2s’ — r' s2)tis1s’ (R is weak commutative)

11 2 2 2 1
= 0.t2525 + 0.s15't1
2 1

r_r r.r

1152471251 11521728,
Hence =

$152 S182/

!

. o T, T T

(le)=+==—+=

S1 Sy S1 Sy

Hence ‘ + ' is well-defined.

From (2) We get,

tit2(ris’ —r's))rs’ =0
11 2

tit2(r1s'r2 — r'sirz)s =0
1 1 2

tit2(r1s'ras’ —r'sires’) =0
172 1 )
tit2( rirzs’'s’ — r'rasis’) = 0 (S is commutative subset)
12 1 2
titorirzs's — titarrasis =0 L.l 3)
12 1 2
From (2) we get
tit2(r2s’ —1r's))r's1 =0
2 271
titar'si(r2s’ —r's2) =0 (R is weak commutative)
1 2 2

tit2( r'siras’ — r'sir'szy) =0
1 2 1 2

’

tit2( r'sis'ry — r'sisor’) = 0 (S is commutative)

1 2 1 2
tit2( r'ras1s’ — r'r'sis2) =0

1 2 12

titar'rzsis’ — titar'r'sis; =0 ... 4)

1 2 12
(3)+(4) gives
titoriras’'s’ — titar'r'sisz = 0

12 12

tit2(rirzs's’ — rr'sisz) = 0
12 12

. 1T rir,
This means—2 = 12
5152 5152

Hence ‘-’ is well-defined.
We note that

2] N r, mTnS—2+1s; (rp+nr)s
S1 Sy S1S; s?

rn+tnr

(51 = 52)

S
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Claim1-(S-1R,+)is an abelian group

Let™ 2 2 eg™IR

S1 S2 S3
Now,
T Ty T3 1 S 3 +T'3 S
-+ (— + —) =24 (2=
S1 S2 S3 S1 S2S3
115,53 + (1253 + 135;,)5;

$15253

115,53 + (1253 + 135;,)51
$15253

18,83 + 8381 + 38,81

515253
Also, (24 2) B = (Bszts |
S1 S S3 5152 S3
_ (1152 +71351)S3 + 13515,
a 515253

11S283 + 135351 + 135153
§15253

4] r T3 n o n T3
—+ (——-+-—— =|—+—)+—
S Sy S3 S1 52 S3

So‘+’ is associative.

For anyg € s™1R, we have
T r+0

r
s 2 S S
0

Also,;+£=°Sﬁ=£
Henceg is the additive identity ofg € s IR,Vre R
Clearly ‘+’ is commutative.
Thus (R,+)is an abelian group.

Claim-2¢-"is associative.

(r_z 13) =0, (ﬂ) = 0 _ r)'s s weak commutative)

S2 ' S3 S1 \S52S3 s1(s253) (s152)s3

(71 72) T3
S; S,/ 83

Now™
S1
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So ‘. is associative.

Claim-3°-is right distributive with respect to+.

Mmrnr_c—
Let=,22eS~IR
S1 S2 S3
T
ri, 2y. r3 118241251 r
Now( "4 ) ™ =( ) 2
S1 sy S3 5182 S3
1r1S2r3+7128173
515283

Sorqr3+Sq1ror ] .
=-2123=12253(3 s commutative sub set)
515253
S2T1T3 S1727'3
= +

515283 5$1S2S83
113 T2rs3

5153 5253

T3 Ty T3
51-53 52-53

Hence right- distributive law is proved.
Claim- 45-1R is a Boolean like near-ring.

It is already proved in claim-1that 2(")=0 for all "€s~1R
S

N

Let a="-and b="2be any two elements of S-1R

s1 s2

Let teS be any element
By lemma (3.4)=(a—a?)(b—b%)t=0

2 2
rq i T2 )
S1 S Sy S3

2 2
=t (r—l — T—l) (2 — T—Z) = 0 (Sis commutative subset

I
o

s;  s¥/\s, s
2 2 2
. z(z_r_z>_r_1<2_z> — o
2 2 2 || =
S1\S2 52 S1\S2 S
2 2 2
r T T T T T . .
=t (—2 — —22) —-t= (—2 — —22) = 0 (R is weak commutative)
S1 \S2 Sy S1 \S2 Sy
I T\ A
U o2t 22"
S, s2)s, Sy S3)st
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IS, — 151 28, — Tzz T12
=t — > —| = 0
52 51 S S1

[ (125,715, _7”227”151 7’2527”12 - T227”12 _
>t 2.2 - 2.2 =0

5251 S251
[ (1,715,581 — 7’227’151 527'27'12 - 7’227’12 _
=t s2s2 B s2s? =0
i 251 251
IoT1S281  T2TySy  SoTeri | rir? . .
StV S5 S ~—| = 0 (S is commutative subset)
5251 S251 5251 5251
r,ry 13Ty Ter{  r3rf
=t T 2e 7t 53| =0
S281 S581 SSy  S5S%
=t(ba—b%2a—ba?—b2a?)=0
=ba=b%a—ba*+b%a?
=b%a—ba?*+(ba)? (by lemma (3.1)

=ba=ba(b+a—ba)
Hence S—1Ris a Boolean like near-ring.

Claim-5 Multiplication in S—1R is commutative.

Let:—l,:—2 be any two elements of S~1R.
1 2

T1 7"2 i1 1128
Then—= =—==—=—=VseS
S1 Sz 5152 51528

= 1172 (5 js commutative subset)
51528

5(7271)

. (R is weak commutative)
1S

_ (mm)s

(S is commutative subset)
S$1528

nn
S, S

Hence multiplication in S—1 R is commutative.
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Claim-6 Existence of multiplicative identity in S—1R.

Letg € S~1R be any element.

r S rs r
ThenZ.2=I2=L
SS SS S

r
S

Then

mlm

Hencef € S~1R is the multiplicative identity of S~1R

Thus S—1R is a commutative Boolean like near-ring with identity.
Theorem 3.7

S—1R is weak commutative near-ring

Proof:

Let a— ,b==,c= S— 2 be any three elements of S™1R
L1 7'2 3 273

Now abc—— - ==

S1 Sy S3 515253
1372 . .

= —— (Ris weak commutative)
$15283
i

= ——=(S is commutative)
$15352

i T 73

S1755 83
=ach
=abc=acbVa,b,cES1R

Hence S—1R is weak commutative near-ring.
Theorem 3.8

Let R be a weak commutative Boolean like near-ring. Let S be a commutative subset of R
Which is multiplicatively closed. Let 0#s€S.Define a mapf;: R - S™'R as f;(r) = rs—s Vr €R.
Then f; is near-ring monomorphism.
Proof:
Let ri,r2€R
Then f;(r; +1,) = (rlzi)s

_ r1S+128 __nS S

N N N

= f(r) + f5(2)

fi(rm) = 222
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r17252

IMIRJ-V(2) ISSN: 2456 —

= T(R is weak commutative)

11821,  118sTy  115(1yS)

S
— s 128
T s s
:fs(r1)'f5(r2)
Also, fs(r1)=fs(rz2)
I‘1$ TZS
S o S
I‘1$ TZS

rh n

s s
(ry —73)s
N —
s
(ry—1m)
s
ry T
>—--2=9
s s
s

Hence fsis monomorphism.
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