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ABSTRACT                                                  

The concepts of Boolean like near-ring and Special Boolean like near-ring are introduced 

by Clay, James.R and Lawver, Donald, A., during 1969. In this paper, we have discussed the 

concept of weak commutative property in a Boolean like near-ring. If R is a weak commutative 

near ring, (ab)n = an bn for all a,b in R and for n ≤ 1 and (a-a2) (b-b2)c = 0 for every a,b,c in a 

Boolean like near-ring. Also, it is proved that, every near-ring is reduced if it has Weak 

Commutativity and also satisfies (*, IFP) property. If R be a weak commutative Boolean Like 

near-ring and S be a commutative subset with multiplicatively closed. Then we define a relation N 

on R×S by (𝑟1, 𝑠1)~(𝑟2, 𝑠1) if there exists an element 𝑠 ∈ 𝑆 such that 𝑠(𝑟1𝑠2 − 𝑟2𝑠1) = 0. Then N 

is an equivalence relation. And also define binary operation + an on 𝑆−1𝑅 as, 

𝑟1 + 
𝑟2 = 

𝑟1𝑠2+𝑟2𝑠1 and 𝑟1 ⋅ 
𝑟2 = 

𝑟1𝑟2
 Then 𝑆−1𝑅 is a commutative Boolean Like near-ring with 

𝑠2 𝑠2 𝑠1𝑠2 𝑠2 𝑠2 𝑠1𝑠2 

identity and also a Weak Commutative near-ring.  

Keywords: Near-Rings, Weak Commutative, Reduced, Boolean Like Near-Ring, R-Subgroup, IFP, (*, IFP), strong IFP. 

 

PRELIMINARIES 

Definition 2.1 

A non-empty set R with two binary operations "+" (addition) and " ∙ " (multiplication) is 

satisfying the following axioms is called a right near-ring 

(i) (𝑅, +) is a (𝑅, ∙ ) is a semi group. 

(ii) For all x,y,z, in R, (𝑥 + 𝑦). 𝑧 = 𝑥. 𝑧 + 𝑦. 𝑧(right distributive law) 

(iii) group (not necessarily abelian). 
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Definition 2.2 

A near ring R is called a zero-symmetric if 𝑎𝑏 = 0 implies 𝑏𝑎 = 0,where 𝑎, 𝑏 𝜖 𝑅. 

Note 2.3 

In a right near-ring R, 0. 𝑎 = 0 ∀𝑎 ∈ 𝑅. 

If (𝑅, +) is an abelian group, then (𝑅, +,∙) is called a semi-ring. 

Definition 2.4 

A near-ring R is subset H if R such that 

(i) (𝐻, +) is a subgroup of (𝑅, +) 

(ii) 𝑅𝐻 ⊆ 𝐻 

(iii) 𝐻𝑅 ⊆ 𝐻 

If H satisfies (i) and (ii) then it is called left R-subgroup of R. If H satisfies (i) and(iii) then 

H is called a right R-subgroup of R. 

Definition 2.5 

A near-ring R is said to reduced if R has no non-zero nilpotent elements. 

Definition 2.6 

Let R be a near-ring. R is said to satisfy intersection of factors property (IFP) if 𝑎𝑏 = 

0 ⇒ 𝑎𝑛𝑏 = 0 for all 𝑛 ∈ 𝑅, where 𝑎, 𝑏 ∈ 𝑅. 

Definition 2.7 

R is said to have strong IFP, if for all ideals I of R, 𝑎𝑏 ∈ 𝐼 ⇒ 𝑎𝑛𝑏 ∈ 𝐼 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ 𝑅 

Definition 2.8 

A near-ring R is said to be regular near-ring if for every a in R there exists x in R such 

that 𝑎 = 𝑎𝑥𝑎. 

Definition 2.9 

A right near ring R is said to be Weak commutative if 𝑥𝑦𝑧 = 𝑥𝑧𝑦 ∀𝑥, 𝑦, 𝑧 ∈ 𝑅 

Definition 2.10 

A right near-ring (𝑅, +,∙) is called a Boolean-like near ring if 

(i) 2𝑎 = 0 ∀ 𝑎 ∈ 𝑅 and 

(ii) (𝑎 + 𝑏 − 𝑎𝑏) = 𝑎𝑏 ∀ 𝑎, 𝑏 ∈ 𝑅 

THE ROLE OF WEAK COMMUTATIVITY IN BOOLEAN LIKE NEAR-RING 

Lemma 3.1 

Let R be a weak commutative near-ring R. Then (𝑎𝑏) = 𝑎𝑛𝑏𝑛 ∀ 𝑎, 𝑏 ∈ 𝑅 and ∀ 𝑛 ≥ 1 
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Proof: 

Let 𝑎, 𝑏 ∈ 𝑅 

Then (𝑎𝑏)2 = (𝑎𝑏)(𝑎𝑏) = (𝑎𝑏𝑎)𝑏 

= (𝑎𝑎𝑏) (R is weak commutative) 

 = 𝑎2𝑏2 

      Assume that (𝑎𝑏) = 𝑎𝑚𝑏𝑚 

  No (𝑎𝑏)+1 = (𝑎𝑏)𝑚𝑎𝑏 

                                        = 𝑎𝑚𝑏𝑚 𝑎𝑏 = ( 𝑎𝑚𝑏𝑚 𝑎)𝑏 

= (𝑎𝑚 ) (R is weak commutative) 

= 𝑎𝑚+1𝑏𝑚+1 

Thus      (𝑎𝑏) = 𝑎𝑚𝑏𝑚 ∀ 𝑎, 𝑏 ∈ 𝑅 and for all integer 𝑚 ≥ 1 

Lemma 3.2 

Let R be a weak commutative Boolean like near-ring. Then 

𝑎2𝑏 + 𝑎𝑏2 = 𝑎𝑏 + (𝑎𝑏)2∀ 𝑎, 𝑏 ∈ 𝑅. 

Proof: 

   𝑎2𝑏 + 𝑎𝑏2 = 𝑎𝑎𝑏 + 𝑎𝑏𝑏 

 = 𝑎𝑏𝑎 + 𝑎𝑏𝑏 

 = 𝑎𝑏(𝑎 + 𝑏) 

= 𝑎𝑏(𝑎 + 𝑏 − 𝑎𝑏 + 𝑎𝑏) 

= (𝑎 + 𝑏 − 𝑎𝑏) + (𝑎𝑏)2 

= 𝑎𝑏 + (𝑎𝑏)2 (R is Boolean like near-ring) 

𝑎2𝑏 + 𝑎𝑏2 = 𝑎𝑏 + (𝑎𝑏)2∀ 𝑎, 𝑏 ∈ 𝑅. 
 

Lemma 3.3 

In a weak commutative Boolean like near-ring (𝑅, +,∙ ) 

Then (𝑎 + 𝑎2)(𝑏 + 𝑏2)𝑐 = 0 ∀ 𝑎, 𝑏, 𝑐 ∈ 𝑅. 

Proof:               (𝑎 + 𝑎2)(𝑏 + 𝑏2)𝑐 = { 𝑎 (𝑏 + 𝑏2) + 𝑎2(𝑏 + 𝑏2)}𝑐 
                                    = 𝑎 (𝑏 + 𝑏2) + 𝑎2(𝑏 + 𝑏2)𝑐 

                                    = 𝑎c(𝑏 + 𝑏2) + 𝑎2(𝑏 + 𝑏2) } (R is weak commutative) 

                                                                   = c { 𝑎 (𝑏 + 𝑏2) + 𝑎2(𝑏 + 𝑏2)} 
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                                                               = c { 𝑎𝑏 + 𝑎𝑏2 + 𝑎2𝑏 + 𝑎2 𝑏2} 
                                                       = c{𝑎𝑏 + 𝑎𝑏 + (𝑎𝑏)2 + 𝑎2𝑏2} (using Lemma 3.2) 

                       = c {2𝑎𝑏 + 2𝑎2𝑏2} 

                       = 0 (R is Boolean like near-ring)          

Lemma 3.4 

 

 

 

Proof: 

In a weak commutative Boolean like near-ring R, 

(𝑎 − 𝑎2)(𝑏 − 𝑏2)𝑐 = 0 ∀ 𝑎, 𝑏, 𝑐 ∈ 𝑅 
 
(𝑎 − 𝑎2)(𝑏 − 𝑏2)𝑐 = {(𝑏 − 𝑏2) − 𝑎2(𝑏 − 𝑏2)}𝑐 

= {(𝑏 − 𝑏2) − 𝑎2(𝑏 − 𝑏2)𝑐} 

= {(𝑏 − 𝑏2) − 𝑎2(𝑏 − 𝑏2)} (R is weak commutative) 

= {(𝑏 − 𝑏2) − 𝑎2(𝑏 − 𝑏2)} 

= {𝑎𝑏 − 𝑎𝑏2 − 𝑎2𝑏 + 𝑎2𝑏2} 

= {𝑎𝑏 − 𝑎𝑏 − (𝑎𝑏)2 + 𝑎2𝑏2} (using Lemma 3.2 ) 

= 0 

Hence proved. 

Lemma 3.5 

Let R be a weak commutative Boolean like near-ring. Let 𝑆 be a commutative subset of 𝑅 which is 

multiplicatively closed. Define a relation 𝑁 on 𝑅 × 𝑆 by (𝑟1, 𝑠1)~(𝑟2, 𝑠2) iff there exists an element 

𝑠 ∈ 𝑆  

Proof: 

(i) Let (𝑟, 𝑠) ∈ 𝑅 × 𝑆 

Since 𝑟𝑠 − 𝑟𝑠 = 0 

⇒ (𝑟𝑠 − 𝑟𝑠) = 0 for all 𝑡 ∈ 𝑆 

Hence ‘~’ is reflexive. 

(ii) Let(𝑟1, 𝑠1)~(𝑟2, 𝑠2) 

Then there exists an element 𝑠 ∈ 𝑆 such that 

(𝑟1𝑠2 − 𝑟2𝑠1) = 0 

⇒ (𝑟2𝑠1 − 𝑟1𝑠2) = 0 

such that 𝑠(𝑟1𝑠2 − 𝑟2𝑠1) = 0. Then 𝑁 is an equivalence relation. 

Hence ‘~’ is symmetric. 
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𝑠𝘍 

𝑟   

𝑠𝘍 

𝑟   

 (iii) Let (𝑟1, 𝑠1)~(𝑟2, 𝑠2) and (𝑟2, 𝑠2)~(𝑟3, 𝑠3) 

Then there exists 𝑝, 𝑞 ∈ 𝑆 such that 

(𝑟1𝑠2 − 𝑟2𝑠1) = 0 and (𝑟2𝑠3 − 𝑟3𝑠2) = 0 

⇒ 𝑝𝑠3(𝑟1𝑠2 − 𝑟2𝑠1) = 0 = 𝑞𝑠1(𝑟2𝑠3 − 𝑟3𝑠2) 

⇒ (𝑟1𝑠2 − 𝑟2𝑠1)3 = 0 = (𝑟2𝑠3 − 𝑟3𝑠2)𝑠1 (R- weak commutative) 

⇒ (𝑟1𝑠2 − 𝑟2𝑠1)3 = 0 = 𝑝𝑞(𝑟2𝑠3 − 𝑟3𝑠2)𝑠1 

⇒ (𝑟1𝑠2𝑠3 − 𝑟2𝑠1𝑠3) = 0 = 𝑝(𝑟2𝑠3𝑠1 − 𝑟3𝑠2𝑠1) 

⇒ 𝑝𝑞 (𝑟1𝑠2𝑠3 − 𝑟2𝑠1𝑠3+𝑟2𝑠3𝑠1 − 𝑟3𝑠2𝑠1) = 0 

⇒ (𝑟1𝑠3𝑠2 − 𝑟2𝑠1𝑠3 + 𝑟2𝑠1𝑠3 − 𝑟3𝑠1𝑠2) = 0 (S is commutative) 

⇒ (𝑟1𝑠3𝑠2 − 𝑟3𝑠1𝑠2) = 0 

⇒ (𝑟1𝑠3 − 𝑟3𝑠1)2 = 0 

⇒ 𝑝𝑞 𝑠2(𝑟1𝑠3 − 𝑟3𝑠1) = 0 (R is weak commutative) 

⇒ (𝑟1𝑠3 − 𝑟3𝑠1) = 0 where 𝑟 = 𝑝𝑞 𝑠2 ∈ 𝑆 

⇒ (𝑟1, 𝑠1)~(𝑟3, 𝑠3) 
Hence ‘~’ is transitive. 

Hence the lemma. 

Theorem 3.6 

Let R be a weak commutative Boolean like near -ring. Let S be a commutative subset 

of R which is also multiplicatively closed. Define binary operation ‘ + ’ and on 𝑠−1R as follows. 

𝑟1 + 
𝑟2 = 

𝑟1𝑠2+𝑟2𝑠1 and 𝑟1 . 
𝑟2 = 

𝑟1𝑟2 
. Then 𝑠−1 R is a commutative Boolean like near- ring with 

𝑠1 𝑠2 𝑠1𝑠2 𝑠1 𝑠2 𝑠1𝑠2 

identity. 

Proof: 

Let us first prove that ‘ + ’ and ‘ ∙ ’ are well-defined. 

 

Let 

 

𝑟1 

𝑠1 

 
𝘍 

= 1 and 
1 

 
𝑟2 

 

𝑠2 

 
𝘍 

= 2, then there exists 𝑡1, 𝑡2 ∈ 𝑆 such that 
2 

(𝑟1𝑠′ − 𝑟1𝑠′ ) = 0 ………..(1) 
1 1 

and 𝑡(𝑟2𝑠′ − 𝑟2𝑠′ ) = 0 .............................................................. (2) 
2 2 

Now, 𝑡1𝑡2[ (𝑟1𝑠2 + 𝑟2𝑠1)𝑠′ 𝑠′ − (𝑟′𝑠′ + 𝑟′𝑠′ )𝑠1𝑠2] ) 
1  2 1   2 1  2 

= 𝑡1𝑡2[ 𝑟1𝑠2𝑠′𝑠′ + 𝑟2𝑠1 𝑠′ 𝑠′ − 𝑟′𝑠′ 𝑠1𝑠2 − 𝑟′𝑠′ 𝑠1𝑠2] 
1  2 1  2 1   2 2 1 

= 𝑡1𝑡2[ 𝑟1𝑠′𝑠2𝑠′ − 𝑟′𝑠1𝑠2𝑠′ + 𝑟2𝑠′ 𝑠1𝑠′ − 𝑟′ 𝑠2𝑠1𝑠′] (S is commutative subset) 
1 2 1 2 2 1 2 1 
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= 𝑡1𝑡2[( 𝑟1𝑠′ − 𝑟′𝑠1)𝑠2𝑠′ + (𝑟2𝑠′ − 𝑟′ 𝑠2)𝑠1𝑠′] 

1 1 2 2 2 1 

= 𝑡1𝑡2( 𝑟1𝑠′ − 𝑟′𝑠1)𝑠2𝑠′ + 𝑡1𝑡2(𝑟2𝑠′ − 𝑟′ 𝑠2)𝑠1𝑠′ 
1 1 2 2 2 1 

= 𝑡1( 𝑟1𝑠′ − 𝑟′𝑠1)𝑡2𝑠2𝑠′ + 𝑡2(𝑟2𝑠′ − 𝑟′ 𝑠2)𝑡1𝑠1𝑠′ (R is weak commutative) 
1 1 2 2 2 1 

= 0. 𝑡2𝑠2𝑠′ + 0. 𝑠1𝑠′ 𝑡1 
2 1 

= 0 

Hence
𝑟1𝑠2+𝑟2𝑠1

𝑠1𝑠2
=

𝑟1
′𝑠2

′+𝑟2
′𝑠1

′

𝑠1𝑠2′
 

                   (i.e.) 
𝑟1

𝑠1
+

𝑟2

𝑠2
=

𝑟1
′

𝑠1
′ +

𝑟2
′

𝑠2
′

Hence ‘ + ’ is well-defined. 

From (2) We get, 

𝑡1𝑡2( 𝑟1𝑠′ − 𝑟′𝑠1)𝑟2𝑠′ = 0 
1 1 2 

𝑡1𝑡2( 𝑟1𝑠′ 𝑟2 − 𝑟′𝑠1𝑟2)𝑠′ = 0 
1 1 2 

𝑡1𝑡2( 𝑟1𝑠′ 𝑟2𝑠′ − 𝑟′𝑠1𝑟2𝑠′ ) = 0 
1 2 1 2 

𝑡1𝑡2( 𝑟1𝑟2𝑠′𝑠′ − 𝑟′𝑟2𝑠1𝑠′ ) = 0 (S is commutative subset) 
1  2 1 2 

𝑡1𝑡2𝑟1𝑟2𝑠′ 𝑠′ − 𝑡1𝑡2𝑟′𝑟2𝑠1𝑠′ = 0 ………….(3) 
1  2 1 2 

From (2) we get 

𝑡1𝑡2( 𝑟2𝑠′ − 𝑟′𝑠2)𝑟′𝑠1 = 0 
2 2 1 

𝑡1𝑡2𝑟′𝑠1( 𝑟2𝑠′ − 𝑟′𝑠2) = 0 (R is weak commutative) 
1 2 2 

𝑡1𝑡2( 𝑟′𝑠1𝑟2𝑠′ − 𝑟′𝑠1𝑟′𝑠2) = 0 
1 2 1 2 

𝑡1𝑡2( 𝑟′𝑠1𝑠′ 𝑟2 − 𝑟′𝑠1𝑠2𝑟′) = 0 (S is commutative) 
1 2 1 2 

𝑡1𝑡2( 𝑟′𝑟2𝑠1𝑠′ − 𝑟′𝑟′𝑠1𝑠2) = 0 
1 2 1 2 

𝑡1𝑡2𝑟′𝑟2𝑠1𝑠′ − 𝑡1𝑡2𝑟′𝑟′𝑠1𝑠2 = 0 ……….(4) 
1 2 1 2 

(3)+(4) gives 

𝑡1𝑡2𝑟1𝑟2𝑠′ 𝑠′ − 𝑡1𝑡2𝑟′𝑟′𝑠1𝑠2 = 0 
1  2 1 2 

𝑡1𝑡2(𝑟1𝑟2𝑠′𝑠′ − 𝑟′𝑟′𝑠1𝑠2) = 0 
1 2 

 
1  2 

This means
𝑟1𝑟2

𝑠1𝑠2
=

𝑟1
′𝑟2

′

𝑠1
′ 𝑠2

′

Hence ‘∙’ is well-defined. 

We note that 

𝑟1

𝑠1
+

𝑟2

𝑠2
=

𝑟1𝑠 − 2 + 𝑟2𝑠1

𝑠1𝑠2
=

(𝑟1 + 𝑟2)𝑠

𝑠2
(∴ 𝑠1 = 𝑠2) 

=
𝑟1 + 𝑟2

𝑠
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 Claim1-(𝑆−1𝑅,+)is an abelian group 

 

Let 
𝑟1

𝑠1
,

𝑟2

𝑠2
,

𝑟3

𝑠3
∈ S−1𝑅 

     Now, 

                  
𝑟1

𝑠1
+ (

𝑟2

𝑠2
+

𝑟3

𝑠3
) =

𝑟1

𝑠1
+ (

𝑟2𝑠3+𝑟3𝑠2

𝑠2𝑠3
) 

=
𝑟1𝑠2𝑠3 + (𝑟2𝑠3 + 𝑟3𝑠2)𝑠1

𝑠1𝑠2𝑠3
 

=
𝑟1𝑠2𝑠3 + (𝑟2𝑠3 + 𝑟3𝑠2)𝑠1

𝑠1𝑠2𝑠3
 

=
𝑟1𝑠2𝑠3 + 𝑟2𝑠3𝑠1 + 𝑟3𝑠2𝑠1

𝑠1𝑠2𝑠3
 

           Also, (
𝑟1

𝑠1
+

𝑟2

𝑠2
) +

𝑟3

𝑠3
= (

𝑟1𝑠2+𝑟2𝑠1

𝑠1𝑠2
) +

𝑟3

𝑠3
 

=
(𝑟1𝑠2 + 𝑟2𝑠1)𝑠3 + 𝑟3𝑠1𝑠2

𝑠1𝑠2𝑠3
 

=
𝑟1𝑠2𝑠3 + 𝑟2𝑠3𝑠1 + 𝑟3𝑠1𝑠2

𝑠1𝑠2𝑠3
 

𝑟1

𝑠1
+ (

𝑟2

𝑠2
+

𝑟3

𝑠3
) = (

𝑟1

𝑠1
+

𝑟2

𝑠2
) +

𝑟3

𝑠3
 

 
So‘+’ is associative.

For any 
𝑟

𝑠
∈ 𝑠−1𝑅, we have 

𝑟

𝑠
+

0

2
=

𝑟 + 0

𝑠
=

𝑟

𝑠
 

                                                       Also, 
0

𝑠
+

𝑟

𝑠
=

0+𝑠

𝑠
=

𝑟

𝑠
 

Hence 
0

𝑠
 is the additive identity of 

𝑟

𝑠
∈ 𝑠−1𝑅, ∀𝑟 ∈  𝑅 

Clearly ‘+’ is commutative. 

Thus (𝑅,+)is an abelian group. 

Claim-2‘∙ ’is associative. 
 

Now
𝑟1

𝑠1
. (

𝑟2

𝑠2
.

𝑟3

𝑠3
) =

𝑟1

𝑠1
. (

𝑟2𝑟3

𝑠2𝑠3
) =

𝑟1(𝑟2𝑟3)

𝑠1(𝑠2𝑠3)
=

(𝑟1𝑟2)𝑟3

(𝑠1𝑠2)𝑠3
  (R is weak commutative) 

    = (
𝑟1

𝑠1
.
𝑟2

𝑠2
) .

𝑟3

𝑠3
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So ‘.’ is associative.

Claim-3‘∙’is right distributive with respect to+. 

Let
𝑟1,

𝑟2,
𝑟3∈𝑆−1𝑅 

𝑠1 

 

Now( 

𝑠2 

𝑟1+
 

𝑠1 

𝑠3 

𝑟2)∙ 
𝑠2 

 
𝑟3 

𝑠3 

 
=(

𝑟1𝑠2+𝑟2𝑠1)∙
 

𝑠1𝑠2 

 
𝑟3 

𝑠3 

 

𝑟1𝑠2𝑟3+𝑟2𝑠1𝑟3 
 

= 
𝑠1𝑠2𝑠3 

=
𝑠2𝑟1𝑟3+𝑠1𝑟2𝑟3

(S is commutative sub set) 
𝑠1𝑠2𝑠3 

𝑠2𝑟1𝑟3 
= 

𝑠1𝑠2𝑠3 

𝑠1𝑟2𝑟3 
+ 

𝑠1𝑠2𝑠3 
𝑟1𝑟3 

= 
𝑠1𝑠3 

𝑟2𝑟3 
+ 

𝑠2𝑠3 

=
𝑟1

𝑠1
.
𝑟3

𝑠3
+

𝑟2

𝑠2
.
𝑟3

𝑠3
 

 

Hence right- distributive law is proved. 

Claim- 4𝑆−1 𝑅 is a Boolean like near-ring. 

It is already proved in claim-1that 2(
𝑟
)=0 for all 𝑟∈𝑠−1𝑅 
𝑠 𝑠 

Let 𝑎=
𝑟1  

and 𝑏=
𝑟2

be any two elements of 𝑆−1𝑅 
𝑠1 𝑠2 

Let 𝑡∈𝑆 be any element 

By lemma (3.4)⇒(𝑎−𝑎2)(𝑏−𝑏2)𝑡=0 

                                       ⇒ (
r1

𝑠1
−

𝑟1
2

𝑠1
2) (

𝑟2

𝑠2
−

𝑟2
2

𝑠2
2) 𝑡 = 0 

                                       ⇒ t (
r1

𝑠1
−

𝑟1
2

𝑠1
2) (

𝑟2

𝑠2
−

𝑟2
2

𝑠2
2) = 0  (S is commutative subset  

⇒ t (
r1

𝑠1
(

𝑟2

𝑠2
−

𝑟2
2

𝑠2
2) −

𝑟1
2

𝑠1
2 (

𝑟2

𝑠2
−

𝑟2
2

𝑠2
2)) = 0 

                                                      ⇒ t
r1

𝑠1
(

𝑟2

𝑠2
−

𝑟2
2

𝑠2
2) − 𝑡

𝑟1
2

𝑠1
2 (

𝑟2

𝑠2
−

𝑟2
2

𝑠2
2) = 0  (R is weak commutative) 

⇒ t (
r2

𝑠2
−

𝑟2
2

𝑠2
2)

𝑟1

𝑠1
− 𝑡. (

𝑟2

𝑠2
−

𝑟2
2

𝑠2
2)

𝑟1
2

𝑠1
2 = 0   
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⇒ t [(
r2

𝑠2
−

𝑟2
2

𝑠2
2)

𝑟1

𝑠1
− (

𝑟2

𝑠2
−

𝑟2
2

𝑠2
2)

𝑟1
2

𝑠1
2] = 0 

⇒ t [(
r2𝑠2 − 𝑟2

2

𝑠2
2 )

𝑟1

𝑠1
− (

𝑟2𝑠2 − 𝑟2
2

𝑠2
2 )

𝑟1
2

𝑠1
2] = 0 

⇒ t [(
r2𝑠2 − 𝑟2

2

𝑠2
2 )

𝑟1𝑠1

𝑠1
2 − (

𝑟2𝑠2 − 𝑟2
2

𝑠2
2 )

𝑟1
2

𝑠1
2] = 0 

⇒ t [(
r2𝑠2𝑟1𝑠1 − 𝑟2

2𝑟1𝑠1

𝑠2
2𝑠1

2 ) − (
𝑟2𝑠2𝑟1

2 − 𝑟2
2𝑟1

2

𝑠2
2𝑠1

2 )] = 0 

⇒ t [(
r2𝑟1𝑠2𝑠1 − 𝑟2

2𝑟1𝑠1

𝑠2
2𝑠1

2 ) − (
𝑠2𝑟2𝑟1

2 − 𝑟2
2𝑟1

2

𝑠2
2𝑠1

2 )] = 0 

                                       ⇒ t [
r2𝑟1𝑠2𝑠1

𝑠2
2𝑠1

2 −
𝑟2

2𝑟1𝑠1

𝑠2
2𝑠1

2 −
𝑠2𝑟2𝑟1

2

𝑠2
2𝑠1

2 +
𝑟2

2𝑟1
2

𝑠2
2𝑠1

2] = 0 (S is commutative subset) 

⇒ t [
r2𝑟1

𝑠2𝑠1

−
𝑟2

2𝑟1

𝑠2
2𝑠1

−
𝑟2𝑟1

2

𝑠2𝑠1
2 +

𝑟2
2𝑟1

2

𝑠2
2𝑠1

2] = 0 

        ⇒𝑡(𝑏𝑎−𝑏2𝑎−𝑏𝑎2−𝑏2𝑎2)=0 

          ⇒𝑏𝑎=𝑏2𝑎−𝑏𝑎2+𝑏2𝑎2 

=𝑏2𝑎−𝑏𝑎2+(𝑏𝑎)2 (by lemma (3.1) 

⇒𝑏𝑎=𝑏𝑎(𝑏+𝑎−𝑏𝑎) 

Hence 𝑆−1𝑅is a Boolean like near-ring. 

Claim-5  Multiplication in 𝑆−1𝑅 is commutative. 

Let
𝑟1

𝑠1
,

𝑟2

𝑠2
 be any two elements of 𝑆−1𝑅. 

Then
𝑟1

𝑠1
.

𝑟2

𝑠2
=

𝑟1𝑟2

𝑠1𝑠2
=

𝑟1𝑟2𝑠

𝑠1𝑠2𝑠
∀𝑠 ∈ 𝑆 

=
𝑠𝑟1𝑟2

𝑠1𝑠2𝑠
 (S is commutative subset) 

=
𝑠(𝑟2𝑟1)

𝑠1𝑠2𝑠
 (R is weak commutative) 

=
(𝑟1𝑟2)𝑠

𝑠1𝑠2𝑠
 (S is commutative subset) 

=
𝑟2

𝑠2
.
𝑟1

𝑠1

Hence multiplication in 𝑆−1 𝑅 is commutative. 
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Claim-6 Existence of multiplicative identity in 𝑆−1𝑅. 

Let
𝑟

𝑠
∈ 𝑆−1𝑅 be any element. 

Then 
𝑟

𝑠
.

𝑠

𝑠
=

𝑟𝑠

𝑠𝑠
=

𝑟

𝑠
 

Then 
𝑠

𝑠
.

𝑟

𝑠
=

𝑠𝑟

𝑠𝑠
=

𝑟

𝑠
 

Hence 
𝑠

𝑠
∈ 𝑆−1𝑅 is the multiplicative identity of 𝑆−1𝑅 

Thus 𝑆−1 𝑅 is a commutative Boolean like near-ring with identity. 

Theorem 3.7 

𝑆−1 𝑅 is weak commutative near-ring 

  Proof: 

           Let 𝑎=
𝑟1

𝑠1
, 𝑏 =

𝑟2

𝑠2
, 𝑐 =

𝑟3

𝑠3
 be any three elements of 𝑆−1𝑅 

             Now abc=
𝑟1

𝑠1
.

𝑟2

𝑠2
.

𝑟3

𝑠3
=

𝑟1𝑟2𝑟3

𝑠1𝑠2𝑠3
  

                                 =
𝑟1𝑟3𝑟2

𝑠1𝑠2𝑠3
       (R is weak commutative) 

                                  =
𝑟1𝑟3𝑟2

𝑠1𝑠3𝑠2
(S is commutative)  

                                      =
𝑟1

𝑠1
.
𝑟2

𝑠2
.
𝑟3

𝑠3
 

                                      =𝑎𝑐𝑏 

⇒𝑎𝑏𝑐=𝑎𝑐𝑏∀𝑎,𝑏,𝑐∈𝑆−1𝑅 

Hence 𝑆−1𝑅 is weak commutative near-ring. 

Theorem 3.8 

Let R be a weak commutative Boolean like near-ring. Let S be a commutative subset of R 

Which is multiplicatively closed. Let 0≠𝑠∈𝑆.Define a map𝑓𝑠 : 𝑅 → 𝑆−1𝑅 𝑎𝑠 𝑓𝑠(𝑟) =
𝑟𝑠

𝑠
 ∀𝑟 ∈ 𝑅. 

Then 𝑓𝑠  is near-ring monomorphism. 

Proof:

Let 𝑟1,𝑟2∈𝑅 

                           Then 𝑓𝑠(𝑟1 + 𝑟2) =
(𝑟1+𝑟2)𝑠

𝑠
 

                                                                      =
𝑟1𝑠+𝑟2𝑠

𝑠
=

𝑟1𝑠

𝑠
+

𝑟2𝑠

𝑠
 

= 𝑓𝑠(𝑟1) + 𝑓𝑠(𝑟2)

                                                 𝑓𝑠(𝑟1. 𝑟2) =
(𝑟1.𝑟2)𝑠

𝑠
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                                          =
𝑟1𝑟2𝑠2

𝑠
(R is weak commutative) 

 

=
𝑟1𝑠2𝑟2

𝑠
=

𝑟1𝑠𝑠𝑟2

𝑠
=

𝑟1𝑠(𝑟2𝑠)

𝑠
 

                                             =
𝑟1𝑠

𝑠
.

𝑟2𝑠

𝑠
 

                                         =𝑓𝑠(𝑟1)⋅𝑓𝑠(𝑟2) 
 

                    Also, 𝑓𝑠(𝑟1)=𝑓𝑠(𝑟2) 

                                         ⇒
r1𝑠

𝑠
=

𝑟2𝑠

𝑠
 

⇒
r1𝑠

𝑠
−

𝑟2𝑠

𝑠
= 0 

⇒
(r1 − 𝑟2)𝑠

𝑠
= 0 

 

⇒
(r1 − 𝑟2)

𝑠
= 0 

⇒
r1

𝑠
−

𝑟2

𝑠
= 0 

⇒
r1

𝑠
=

𝑟2

𝑠
 

Hence 𝑓𝑠 is monomorphism. 
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