THE ROLE OF WEAK COMMUTATIVITY IN BOOLEAN LIKE NEAR-RING

Radha, D^{1} and Manicka Raja Lakshmi, B^{2}.
${ }^{[1]}$ Assistant Professor of Mathematics
${ }^{[2]}$ II M.Sc Mathematics
A.P.C Mahalaxmi College for Women
Thoothukudi. TamilNadu. India

Corresponding author: radharavimaths@gmail.com

Abstract

The concepts of Boolean like near-ring and Special Boolean like near-ring are introduced by Clay, James.R and Lawver, Donald, A., during 1969. In this paper, we have discussed the concept of weak commutative property in a Boolean like near-ring. If R is a weak commutative near ring, $(a b)^{n}=a^{n} b^{n}$ for all a, b in R and for $n \leq 1$ and $\left(a-a^{2}\right)\left(b-b^{2}\right) c=0$ for every a, b, c in a Boolean like near-ring. Also, it is proved that, every near-ring is reduced if it has Weak Commutativity and also satisfies (*, IFP) property. If R be a weak commutative Boolean Like near-ring and S be a commutative subset with multiplicatively closed. Then we define a relation N on $\mathrm{R} \times \mathrm{S}$ by $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{1}\right)$ if there exists an element $s \in S$ such that $s\left(r_{1} s_{2}-r_{2} s_{1}\right)=0$. Then N is an equivalence relation. And also define binary operation + an on $S^{-1} R$ as, $$
\frac{r_{1}}{s_{2}}+\frac{r_{2}}{s_{2}}=\frac{r_{1} \underline{s_{2}} \underline{\underline{r}}+r_{2} \underline{s}_{1}}{s_{1} s_{2}} \text { and } \frac{r_{1}}{s_{2}} \cdot \frac{r_{2}}{s_{2}}=\frac{r_{1} r_{2}}{s_{1} s_{2}} \text { Then } S^{-1} R \text { is a commutative Boolean Like near-ring with }
$$ identity and also a Weak Commutative near-ring.

Keywords: Near-Rings, Weak Commutative, Reduced, Boolean Like Near-Ring, \boldsymbol{R}-Subgroup, IFP, (*,IFP), strong IFP.

PRELIMINARIES

Definition 2.1

A non-empty set R with two binary operations " + " (addition) and " \cdot " (multiplication) is satisfying the following axioms is called a right near-ring
(i) $(R,+)$ is a (R, \cdot) is a semi group.
(ii) For all $\mathrm{x}, \mathrm{y}, \mathrm{z}$, in $\mathrm{R},(x+y) \cdot z=x \cdot z+y \cdot z$ (right distributive law)
(iii) group (not necessarily abelian).

Definition 2.2

A near ring R is called a zero-symmetric if $a b=0$ implies $b a=0$, where $a, b \in R$.
Note 2.3
In a right near-ring R, $0 . a=0 \forall a \in R$.
If $(R,+)$ is an abelian group, then $(R,+$,$) is called a semi-ring.$

Definition 2.4

A near-ring R is subset H if R such that
(i) $(H,+)$ is a subgroup of $(R,+)$
(ii) $R H \subseteq H$
(iii) $H R \subseteq H$

If H satisfies (i) and (ii) then it is called left R-subgroup of R. If H satisfies (i) and(iii) then H is called a right R-subgroup of R.
Definition 2.5
A near-ring R is said to reduced if R has no non-zero nilpotent elements.
Definition 2.6
Let R be a near-ring. R is said to satisfy intersection of factors property (IFP) if $a b=$ $0 \Rightarrow a n b=0$ for all $n \in R$, where $a, b \in R$.

Definition 2.7
R is said to have strong IFP, if for all ideals I of $\mathrm{R}, a b \in I \Rightarrow$ anb $\in I$ for all $n \in R$

Definition 2.8

A near-ring R is said to be regular near-ring if for every a in R there exists x in R such that $a=a x a$.

Definition 2.9
A right near ring R is said to be Weak commutative if $x y z=x z y \forall x, y, z \in R$

Definition 2.10

A right near-ring $(R,+, \cdot)$ is called a Boolean-like near ring if
(i) $2 a=0 \forall a \in R$ and
(ii) $(a+b-a b)=a b \forall a, b \in R$

THE ROLE OF WEAK COMMUTATIVITY IN BOOLEAN LIKE NEAR-RING

Lemma 3.1

Let R be a weak commutative near-ring R. Then $(a b)=a^{n} b^{n} \forall a, b \in R$ and $\forall n \geq 1$

Proof:

Let $a, b \in R$
Then $(a b)^{2}=(a b)(a b)=(a b a) b$

$$
\begin{aligned}
& =(a a b) \quad(R \text { is weak commutative }) \\
& =a^{2} b^{2}
\end{aligned}
$$

Assume that $(a b)=a^{m} b^{m}$
No $(a b)^{+1}=(a b)^{m} a b$

$$
\begin{aligned}
& =a^{m} b^{m} a b=\left(a^{m} b^{m} a\right) b \\
& =\left(a^{m}\right) \quad(R \text { is weak commutative }) \\
& =a^{m+1} b^{m+1}
\end{aligned}
$$

Thus $\quad(a b)=a^{m} b^{m} \forall a, b \in R$ and for all integer $m \geq 1$

Lemma 3.2

Let R be a weak commutative Boolean like near-ring. Then $a^{2} b+a b^{2}=a b+(a b)^{2} \forall a, b \in R$.

Proof:

$$
\begin{aligned}
a^{2} b+a b^{2} & =a a b+a b b \\
& =a b a+a b b \\
& =a b(a+b) \\
& =a b(a+b-a b+a b) \\
& =(a+b-a b)+(a b)^{2} \\
& =a b+(a b)^{2} \quad(R \text { is Boolean like near-ring }) \\
a^{2} b+a b^{2} & =a b+(a b)^{2} \forall a, b \in R .
\end{aligned}
$$

Lemma 3.3

In a weak commutative Boolean like near-ring $(R,+, \cdot)$
Then $\left(a+a^{2}\right)\left(b+b^{2}\right) c=0 \forall a, b, c \in R$.
Proof:

$$
\begin{aligned}
\left(a+a^{2}\right)\left(b+b^{2}\right) c & =\left\{a\left(b+b^{2}\right)+a^{2}\left(b+b^{2}\right)\right\} c \\
& =a\left(b+b^{2}\right)+a^{2}\left(b+b^{2}\right) c \\
& \left.=a c\left(b+b^{2}\right)+a^{2}\left(b+b^{2}\right)\right\} \quad \text { (R is weak commutative) } \\
& =c\left\{a\left(b+b^{2}\right)+a^{2}\left(b+b^{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =c\left\{a b+a b^{2}+a^{2} b+a^{2} b^{2}\right\} \\
& =c\left\{a b+a b+(a b)^{2}+a^{2} b^{2}\right\} \text { (using Lemma 3.2) } \\
& =c\left\{2 a b+2 a^{2} b^{2}\right\} \\
& =0 \quad(R \text { is Boolean like near-ring })
\end{aligned}
$$

Lemma 3.4

In a weak commutative Boolean like near-ring R,

$$
\left(a-a^{2}\right)\left(b-b^{2}\right) c=0 \forall a, b, c \in R
$$

Proof:

$$
\begin{aligned}
\left(a-a^{2}\right)\left(b-b^{2}\right) c & =\left\{\left(b-b^{2}\right)-a^{2}\left(b-b^{2}\right)\right\} c \\
& =\left\{\left(b-b^{2}\right)-a^{2}\left(b-b^{2}\right) c\right\} \\
& =\left\{\left(b-b^{2}\right)-a^{2}\left(b-b^{2}\right)\right\} \quad(R \text { is weak commutative) } \\
& =\left\{\left(b-b^{2}\right)-a^{2}\left(b-b^{2}\right)\right\} \\
& =\left\{a b-a b^{2}-a^{2} b+a^{2} b^{2}\right\} \\
& =\left\{a b-a b-(a b)^{2}+a^{2} b^{2}\right\} \text { (using Lemma 3.2) } \\
& =0
\end{aligned}
$$

Hence proved.

Lemma 3.5

Let R be a weak commutative Boolean like near-ring. Let S be a commutative subset of R which is multiplicatively closed. Define a relation N on $R \times S$ by $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$ iff there existsan element $s \in S$

Proof:
(i) Let $(r, s) \in R \times S$

Since $r s-r s=0$
$\Rightarrow(r s-r s)=0$ for all $t \in S$
Hence ' \sim ' is reflexive.
(ii) $\operatorname{Let}\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$

Then there exists an element $s \in S$ such that

$$
\begin{aligned}
\left(r_{1} s_{2}-r_{2} s_{1}\right) & =0 \\
\Rightarrow\left(r_{2} s_{1}-r_{1} S_{2}\right) & =0
\end{aligned}
$$

such that $s\left(r_{1} s_{2}-r_{2} s_{1}\right)=0$. Then N is an equivalence relation.
Hence ' \sim ' is symmetric.
(iii) Let $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right)$ and $\left(r_{2}, s_{2}\right) \sim\left(r_{3}, s_{3}\right)$

Then there exists $p, q \in S$ such that

$$
\begin{aligned}
& \left(r_{1} s_{2}-r_{2} s_{1}\right)=0 \text { and }\left(r_{2} s_{3}-r_{3} s_{2}\right)=0 \\
& \Rightarrow p s_{3}\left(r_{1} s_{2}-r_{2} s_{1}\right)=0=q s_{1}\left(r_{2} S_{3}-r_{3} s_{2}\right) \\
& \Rightarrow\left(r_{1} s_{2}-r_{2} s_{1}\right)_{3}=0=\left(r_{2} s_{3}-r_{3} s_{2}\right) s_{1}(R \text { - weak commutative }) \\
& \Rightarrow\left(r_{1} S_{2}-r_{2} S_{1}\right)_{3}=0=p q\left(r_{2} S_{3}-r_{3} S_{2}\right) s_{1} \\
& \Rightarrow\left(r_{1} S_{2} S_{3}-r_{2} S_{1} S_{3}\right)=0=p\left(r_{2} S_{3} S_{1}-r_{3} S_{2} s_{1}\right) \\
& \Rightarrow p q\left(r_{1} S_{2} S_{3}-r_{2} S_{1} S_{3}+r_{2} S_{3} S_{1}-r_{3} S_{2} S_{1}\right)=0 \\
& \Rightarrow\left(r_{1} S_{3} S_{2}-r_{2} S_{1} S_{3}+r_{2} S_{1} S_{3}-r_{3} S_{1} S_{2}\right)=0 \quad(S \text { is commutative }) \\
& \Rightarrow\left(r_{1} S_{3} S_{2}-r_{3} S_{1} S_{2}\right)=0 \\
& \Rightarrow\left(r_{1} s_{3}-r_{3} s_{1}\right)_{2}=0 \\
& \Rightarrow p q s_{2}\left(r_{1} s_{3}-r_{3} s_{1}\right)=0 \quad(R \text { is weak commutative }) \\
& \Rightarrow\left(r_{1} s_{3}-r_{3} s_{1}\right)=0 \quad \text { where } r=p q s_{2} \in S \\
& \Rightarrow\left(r_{1}, s_{1}\right) \sim\left(r_{3}, s_{3}\right) \\
& \text { Hence ' } \sim \text { ' is transitive. } \\
& \text { Hence the lemma. }
\end{aligned}
$$

Theorem 3.6

Let R be a weak commutative Boolean like near -ring. Let S be a commutative subset of R which is also multiplicatively closed. Define binary operation ' + ' and on $s^{-1} R$ as follows. $\underline{r}_{\underline{1}}^{s_{1}}+\underset{s_{2}}{\underline{r_{2}}}=\underset{\underline{r_{1}} \underline{\underline{s}} \underline{\underline{L_{2}}} \underline{r}_{\underline{2}} \underline{s}_{1}}{s_{1} s_{2}}$ and $\frac{r_{1}}{s_{1}} \cdot \underline{r_{2}} \underline{s}_{2}=\frac{r_{1} r_{2}}{s_{1} s_{2}}$. Then $s^{-1} R$ is a commutative Boolean like near- ring with identity.

Proof:

Let us first prove that ' + ' and ' \cdot ' are well-defined.
Let $\frac{r_{1}}{s_{1}}=\frac{r_{1}^{F}}{s_{1}^{F}}$ and $\frac{r_{2}}{s_{2}}=\frac{\frac{r}{2}_{F}^{s_{2}^{F}}}{s_{2}^{F}}$ then there exists $t_{1}, t_{2} \in S$ such that $\left(r_{1} s_{1}^{\prime}-r_{1} s^{\prime}\right)_{1}=0$
and $t\left(r_{2} s_{2}^{\prime}-r_{2} s_{2}^{\prime}\right)=0$
Now, $\left.t_{1} t_{2}\left[\left(r_{1} s_{2}+r_{2} s_{1}\right) s_{1}^{\prime} s_{2}^{\prime}-\left(r_{1}^{\prime} s_{2}^{\prime}+r_{1}^{\prime} s^{\prime}\right) s_{1} s_{2}\right]\right)$

$$
\begin{aligned}
& =t_{1} t_{2}\left[r_{1} s_{2} s_{1}^{\prime} s_{2}^{\prime}+r_{2} s_{1} s_{1}^{\prime} s_{2}^{\prime}-r_{1}^{\prime} s_{2}^{\prime} s_{1} s_{2}-r_{2}^{\prime} s_{1}^{\prime} s_{1} s_{2}\right] \\
& =t_{1} t_{2}\left[r_{1} s_{1}^{\prime} s_{2} s_{2}^{\prime}-r_{1}^{\prime} s_{1} s_{2} s_{2}^{\prime}+r_{2} s_{2}^{\prime} s_{1} s_{1}^{\prime}-r_{2}^{\prime} s_{2} s_{1} s_{1}^{\prime}\right] \quad(S \text { is commutative subset })
\end{aligned}
$$

$$
\begin{aligned}
& =t_{1} t_{2}\left[\left(r_{1} s_{1}^{\prime}-r_{1}^{\prime} s_{1}\right) s_{2} s_{2}^{\prime}+\left(r_{2} s_{2}^{\prime}-r_{2}^{\prime} s_{2}\right) s_{1} s_{1}^{\prime}\right] \\
& =t_{1} t_{2}\left(r_{1} s_{1}^{\prime}-r_{1}^{\prime} s_{1}\right) s_{2} s_{2}^{\prime}+t_{1} t_{2}\left(r_{2} s_{2}^{\prime}-r_{2}^{\prime} s_{2}\right) s_{1} s_{1}^{\prime} \\
& =t_{1}\left(r_{1} s_{1}^{\prime}-r_{1}^{\prime} s_{1}\right) t_{2} s_{2} s_{2}^{\prime}+t_{2}\left(r_{2} s_{2}^{\prime}-r_{2}^{\prime} s_{2}\right) t_{1} s_{1} s_{1}^{\prime}(R \text { is weak commutative }) \\
& = \\
& =0 . t_{2} s_{2} s_{2}^{\prime}+0 . s_{1} s_{1}^{\prime} t_{1} \\
& =0
\end{aligned} \text { Hence } \frac{r_{1} s_{2}+r_{2} s_{1}}{s_{1} s_{2}}=\frac{r_{1}^{\prime} s_{2}^{\prime}+r_{2}^{\prime} s_{1}^{\prime}}{s_{1} s_{2}^{\prime}} . \begin{aligned}
& \text { (i.e.) } \frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{r_{1}^{\prime}}{s_{1}^{\prime}}+\frac{r_{2}^{\prime}}{s_{2}^{\prime}}
\end{aligned}
$$

Hence ' + ' is well-defined.
From (2) We get,
$t_{1} t_{2}\left(r_{1} s_{1}^{\prime}-r_{1}^{\prime} s_{1}\right) r_{2} s_{2}^{\prime}=0$
$t_{1} t_{2}\left(r_{1} s_{1}^{\prime} r_{2}-r_{1}^{\prime} s_{1} r_{2}\right) s_{2}^{\prime}=0$
$t_{1} t_{2}\left(r_{1} s_{1}^{\prime} r_{2} s_{2}^{\prime}-r_{1}^{\prime} s_{1} r_{2} s_{2}^{\prime}\right)=0$
$t_{1} t_{2}\left(r_{1} r_{2} s_{1}^{\prime s^{\prime}}-r_{1}^{\prime} r_{2} s_{1} s^{\prime}\right)_{2}=0(S$ is commutative subset)
$t_{1} t_{2} r_{1} r_{2} s_{1}^{\prime} s_{2}^{\prime}-t_{1} t_{2} r_{1}^{\prime} r_{2} s_{1} s_{2}^{\prime}=0$
From (2) we get

$$
\begin{align*}
& t_{1} t_{2}\left(r_{2} s_{2}^{\prime}-r_{2}^{\prime} s_{2}\right) r_{1}^{\prime} s_{1}=0 \\
& t_{1} t_{2} r_{1}^{\prime} s_{1}\left(r_{2} s_{2}^{\prime}-r_{2}^{\prime} s_{2}\right)=0 \\
& t_{1} t_{2}\left(r_{1}^{\prime} s_{1} r_{2} s_{2}^{\prime}-r_{1}^{\prime} s_{1} r_{2}^{\prime} s_{2}\right)=0 \\
& t_{1} t_{2}\left(r_{1}^{\prime} s_{1} s_{2}^{\prime} r_{2}-r_{1}^{\prime} s_{1} s_{2} r_{2}^{\prime}\right)=0 \tag{4}\\
& 2 \\
& t_{1} t_{2}\left(r_{1}^{\prime} r_{2} s_{1} s_{2}^{\prime}-r_{1}^{\prime} r_{2}^{\prime} s_{1} s_{2}\right)=0 \\
& t_{1} t_{2} r_{1}^{\prime} r_{2} s_{1} s_{2}^{\prime}-t_{1} t_{2} r_{12}^{\prime} r_{1}^{\prime} s_{1} s_{2}=0
\end{align*}
$$

$$
t_{1} t_{2} r_{1}^{\prime} s_{1}\left(r_{2} s_{2}^{\prime}-r_{2}^{\prime} s_{2}\right)=0 \quad(R \text { is weak commutative })
$$

$$
t_{1} t_{2}\left(r_{1}^{\prime} s_{1} s_{2}^{\prime} r_{2}-r_{1}^{\prime} s_{1} s_{2} r_{2}^{\prime}\right)=0 \quad(S \text { is commutative })
$$

(3)+(4) gives

$$
t_{1} t_{2} r_{1} r_{2} s_{1}^{\prime} s_{2}^{\prime}-t_{1} t_{2} r_{1}^{r_{1}^{\prime} r_{2}^{\prime} s_{1} s_{2}}=0
$$

$$
t_{1} t_{2}\left(r_{1} r_{2} s_{12}^{\prime s_{2}^{\prime}}-\underset{1}{\left.r_{1}^{\prime} r_{2}^{\prime} s_{1} s_{2}\right)}=0\right.
$$

This means $\frac{r_{1} r_{2}}{s_{1} s_{2}}=\frac{r_{1}^{\prime} r_{2}^{\prime}}{s_{1}^{\prime} s_{2}^{\prime}}$
Hence ' \cdot ' is well-defined.
We note that

$$
\begin{gathered}
\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{r_{1} s-2+r_{2} s_{1}}{s_{1} s_{2}}=\frac{\left(r_{1}+r_{2}\right) s}{s^{2}}\left(\therefore s_{1}=s_{2}\right) \\
=\frac{r_{1}+r_{2}}{s} \\
73
\end{gathered}
$$

Claim1-($\left.S^{-1} R,+\right)$ is an abelian group

$$
\text { Let } \frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}}, \frac{r_{3}}{s_{3}} \in \mathrm{~S}^{-1} R
$$

Now,

$$
\begin{aligned}
\frac{r_{1}}{s_{1}}+\left(\frac{r_{2}}{s_{2}}\right. & \left.+\frac{r_{3}}{s_{3}}\right)=\frac{r_{1}}{s_{1}}+\left(\frac{r_{2} s_{3}+r_{3} s_{2}}{s_{2} s_{3}}\right) \\
& =\frac{r_{1} s_{2} s_{3}+\left(r_{2} s_{3}+r_{3} s_{2}\right) s_{1}}{s_{1} s_{2} s_{3}} \\
& =\frac{r_{1} s_{2} s_{3}+\left(r_{2} s_{3}+r_{3} s_{2}\right) s_{1}}{s_{1} s_{2} s_{3}} \\
& =\frac{r_{1} s_{2} s_{3}+r_{2} s_{3} s_{1}+r_{3} s_{2} s_{1}}{s_{1} s_{2} s_{3}}
\end{aligned}
$$

Also, $\left(\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}\right)+\frac{r_{3}}{s_{3}}=\left(\frac{r_{1} s_{2}+r_{2} s_{1}}{s_{1} s_{2}}\right)+\frac{r_{3}}{s_{3}}$

$$
\begin{gathered}
=\frac{\left(r_{1} s_{2}+r_{2} s_{1}\right) s_{3}+r_{3} s_{1} s_{2}}{s_{1} s_{2} s_{3}} \\
=\frac{r_{1} s_{2} s_{3}+r_{2} s_{3} s_{1}+r_{3} s_{1} s_{2}}{s_{1} s_{2} s_{3}} \\
\frac{r_{1}}{s_{1}}+\left(\frac{r_{2}}{s_{2}}+\frac{r_{3}}{s_{3}}\right)=\left(\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}\right)+\frac{r_{3}}{s_{3}}
\end{gathered}
$$

So' + ' is associative.
For any $\frac{r}{s} \in s^{-1} R$, we have

$$
\frac{r}{s}+\frac{0}{2}=\frac{r+0}{s}=\frac{r}{s}
$$

Also, $\frac{0}{s}+\frac{r}{s}=\frac{0+s}{s}=\frac{r}{s}$
Hence $\frac{0}{s}$ is the additive identity of $\frac{r}{s} \in s^{-1} R, \forall r \in R$
Clearly ' + ' is commutative.
Thus $(R,+)$ is an abelian group.
Claim-2‘•'is associative.

$$
\begin{aligned}
\operatorname{Now} \frac{r_{1}}{s_{1}} \cdot\left(\frac{r_{2}}{s_{2}} \cdot \frac{r_{3}}{s_{3}}\right)=\frac{r_{1}}{s_{1}} \cdot\left(\frac{r_{2} r_{3}}{s_{2} s_{3}}\right)=\frac{r_{1}\left(r_{2} r_{3}\right)}{s_{1}\left(s_{2} s_{3}\right)} & =\frac{\left(r_{1} r_{2}\right) r_{3}}{\left(s_{1} s_{2}\right) s_{3}}(\mathrm{R} \text { is weak commutative) } \\
& =\left(\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}\right) \cdot \frac{r_{3}}{s_{3}}
\end{aligned}
$$

So ' \quad ' 's associative.
Claim-3''is right distributive with respect to+.

$$
\begin{aligned}
& \text { Let } \stackrel{r_{1}}{\underline{r_{2}}}, \underline{r_{2}}, \underline{r_{3}} \in S^{-1} R \\
& \begin{array}{lll}
s_{1} & s_{2} & s_{3}
\end{array} \\
& \operatorname{Now}\left(\begin{array}{l}
\underline{r}_{1} \\
s_{1}
\end{array}+\frac{r_{2}}{s_{2}}\right) \cdot \stackrel{\underline{r}_{3}}{s_{3}}=\binom{\underline{r_{1}} \underline{s_{2}}+r_{2} \underline{s_{1}} \underline{1}}{s_{1} s_{2}} \cdot \begin{array}{l}
\underline{r}_{3} \\
s_{3}
\end{array} \\
& =\frac{r_{1} S_{2} r_{3}+r_{2} S_{1} r_{3}}{S_{1} S_{2} S_{3}} \\
& =\frac{s_{2} r_{1} r_{3}+s_{1} r_{2} r_{3}}{(S \text { is commutative sub set }) ~} \\
& S_{1} S_{2} S_{3} \\
& =\frac{s_{2} r_{1} r_{3}}{s_{1} S_{2} S_{3}}+\frac{s_{1} r_{2} r_{3}}{s_{1} S_{2} S_{3}} \\
& =\frac{r_{1} r_{3}}{s_{1} S_{3}}+\frac{r_{2} r_{3}}{s_{2} s_{3}} \\
& =\frac{r_{1}}{s_{1}} \cdot \frac{r_{3}}{s_{3}}+\frac{r_{2}}{s_{2}} \cdot \frac{r_{3}}{s_{3}}
\end{aligned}
$$

Hence right- distributive law is proved.
Claim- $4 S^{-1} R$ is a Boolean like near-ring.
It is already proved in claim-1that $2\left(_{s}^{\underline{r}}\right)=0$ for all ${ }^{r} \in s_{s}^{-1} R$
Let $a=\frac{r_{1}}{}$ and $b={ }^{r_{2}}$ be any two elements of $S^{-1} R$
Let $t \in S$ be any element
By lemma (3.4) $\Rightarrow\left(a-a^{2}\right)\left(b-b^{2}\right) t=0$

$$
\begin{aligned}
& \Rightarrow\left(\frac{r_{1}}{s_{1}}-\frac{r_{1}^{2}}{s_{1}^{2}}\right)\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right) t=0 \\
& \Rightarrow \mathrm{t}\left(\frac{\mathrm{r}_{1}}{s_{1}}-\frac{r_{1}^{2}}{s_{1}^{2}}\right)\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right)=0 \quad(\mathrm{~S} \text { is commutative subset } \\
& \Rightarrow \mathrm{t}\left(\frac{\mathrm{r}_{1}}{s_{1}}\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right)-\frac{r_{1}^{2}}{s_{1}^{2}}\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right)\right)=0 \\
& \Rightarrow \mathrm{t} \frac{\mathrm{r}_{1}}{s_{1}}\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right)-t \frac{r_{1}^{2}}{s_{1}^{2}}\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right)=0 \text { (R is weak commutative) } \\
& \Rightarrow \mathrm{t}\left(\frac{\mathrm{r}_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1}}{s_{1}}-t .\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1}^{2}}{s_{1}^{2}}=0
\end{aligned}
$$

$$
\begin{gather*}
\Rightarrow \mathrm{t}\left[\left(\frac{\mathrm{r}_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1}}{s_{1}}-\left(\frac{r_{2}}{s_{2}}-\frac{r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1}^{2}}{s_{1}^{2}}\right]=0 \\
\Rightarrow \mathrm{t}\left[\left(\frac{\mathrm{r}_{2} s_{2}-r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1}}{s_{1}}-\left(\frac{r_{2} s_{2}-r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1}^{2}}{s_{1}^{2}}\right]=0 \\
\Rightarrow \mathrm{t}\left[\left(\frac{\mathrm{r}_{2} s_{2}-r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1} s_{1}}{s_{1}^{2}}-\left(\frac{r_{2} s_{2}-r_{2}^{2}}{s_{2}^{2}}\right) \frac{r_{1}^{2}}{s_{1}^{2}}\right]=0 \\
\Rightarrow \mathrm{t}\left[\left(\frac{\mathrm{r}_{2} s_{2} r_{1} s_{1}-r_{2}^{2} r_{1} s_{1}}{s_{2}^{2} s_{1}^{2}}\right)-\left(\frac{r_{2} s_{2} r_{1}^{2}-r_{2}^{2} r_{1}^{2}}{s_{2}^{2} s_{1}^{2}}\right)\right]=0 \\
\Rightarrow \mathrm{t}\left[\left(\frac{\mathrm{r}_{2} r_{1} s_{2} s_{1}-r_{2}^{2} r_{1} s_{1}}{s_{2}^{2} s_{1}^{2}}\right)-\left(\frac{s_{2} r_{2} r_{1}^{2}-r_{2}^{2} r_{1}^{2}}{s_{2}^{2} s_{1}^{2}}\right)\right]=0 \\
\Rightarrow \mathrm{t}\left[\frac{r_{2} r_{1} s_{2} s_{1}}{s_{2}^{2} s_{1}^{2}}-\frac{r_{2}^{2} r_{1} s_{1}}{s_{2}^{2} s_{1}^{2}}-\frac{s_{2} r_{2} r_{1}^{2}}{s_{2}^{2} s_{1}^{2}}+\frac{r_{2}^{2} r_{1}^{2}}{s_{2}^{2} s_{1}^{2}}\right]=0 \text { (S is commutative subset) } \\
\quad \Rightarrow \mathrm{t}\left[\frac{\mathrm{r}_{2} r_{1}}{s_{2} s_{1}}-\frac{r_{2}^{2} r_{1}}{s_{2}^{2} s_{1}}-\frac{r_{2} r_{1}^{2}}{s_{2} s_{1}^{2}}+\frac{r_{2}^{2} r_{1}^{2}}{s_{2}^{2} s_{1}^{2}}\right]=0 \\
\Rightarrow t\left(b a-b^{2} a-b a^{2}-b^{2} a^{2}\right)=0 \\
\Rightarrow b a=b^{2} a-b a^{2}+b^{2} a^{2} \\
=b a-b a a^{2}+(b a)^{2} \tag{3.1}\\
\Rightarrow b a(b+a-b a)
\end{gather*}
$$

Hence S^{-1} Ris a Boolean like near-ring.
Claim-5 Multiplication in $S^{-1} R$ is commutative.

$$
\begin{aligned}
& \text { Let } \frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}} \text { be any two elements of } S^{-1} R . \\
& \begin{aligned}
\text { Then } \frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}} & =\frac{r_{1} r_{2}}{s_{1} s_{2}}=\frac{r_{1} r_{2} s}{s_{1} s_{2} s} \forall s \in S \\
& =\frac{s r_{1} r_{2}}{s_{1} s_{2} s}(\mathrm{~S} \text { is commutative subset) } \\
& =\frac{s\left(r_{2} r_{1}\right)}{s_{1} s} \text { (R is weak commutative) } \\
& =\frac{\left(r_{1} r_{2}\right) s}{s_{1} s_{2} s}(\mathrm{~S} \text { is commutative subset) } \\
& =\frac{r_{2}}{s_{2}} \cdot \frac{r_{1}}{s_{1}}
\end{aligned}
\end{aligned}
$$

Hence multiplication in $S^{-1} R$ is commutative.

Claim-6 Existence of multiplicative identity in $S^{-1} R$.
$\operatorname{Let}_{s}^{r} \in S^{-1} R$ be any element.
Then $\frac{r}{s} \cdot \frac{s}{s}=\frac{r s}{s s}=\frac{r}{s}$
Then $\frac{s}{s} \cdot \frac{r}{s}=\frac{s r}{s s}=\frac{r}{s}$
Hence $\frac{s}{s} \in S^{-1} R$ is the multiplicative identity of $S^{-1} R$
Thus $S^{-1} R$ is a commutative Boolean like near-ring with identity.

Theorem 3.7

$S^{-1} R$ is weak commutative near-ring

Proof:

Let $a=\frac{r_{1}}{s_{1}}, b=\frac{r_{2}}{s_{2}}, c=\frac{r_{3}}{s_{3}}$ be any three elements of $S^{-1} R$
Now abc $=\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}} \cdot \frac{r_{3}}{s_{3}}=\frac{r_{1} r_{2} r_{3}}{s_{1} s_{2} s_{3}}$

$$
\begin{aligned}
& =\frac{r_{1} r_{3} r_{2}}{s_{1} s_{2} s_{3}} \quad(\mathrm{R} \text { is weak commutative }) \\
& =\frac{r_{1} r_{3} r_{2}}{s_{1} s_{3} s_{2}}(\mathrm{~S} \text { is commutative }) \\
& = \\
& =\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}} \cdot \frac{r_{3}}{s_{3}} \\
& =a c b \\
& \Rightarrow a b c=a c b \forall a, b, c \in S^{-1} R
\end{aligned}
$$

Hence $S^{-1} R$ is weak commutative near-ring.

Theorem 3.8

Let R be a weak commutative Boolean like near-ring. Let S be a commutative subset of R Which is multiplicatively closed. Let $0 \neq s \in S$.Define a $\operatorname{map} f_{s}: R \rightarrow S^{-1} R$ as $f_{s}(r)=\frac{r s}{s} \forall r \in R$. Then f_{s} is near-ring monomorphism.
Proof:
Let $r_{1}, r_{2} \in R$

$$
\text { Then } \begin{aligned}
f_{s}\left(r_{1}+r_{2}\right) & =\frac{\left(r_{1}+r_{2}\right) s}{s} \\
& =\frac{r_{1} s+r_{2} s}{s}=\frac{r_{1} s}{s}+\frac{r_{2} s}{s} \\
& =f_{s}\left(r_{1}\right)+f_{s}\left(r_{2}\right) \\
f_{s}\left(r_{1} \cdot r_{2}\right) & =\frac{\left(r_{1} \cdot r_{2}\right) s}{s}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{r_{1} r_{2} s^{2}}{s}(R \text { is weak commutative }) \\
& =\frac{r_{1} s^{2} r_{2}}{s}=\frac{r_{1} s s r_{2}}{s}=\frac{r_{1} s\left(r_{2} s\right)}{s} \\
& =\frac{r_{1} s}{s} \cdot \frac{r_{2} s}{s} \\
& =f_{s}\left(r_{1}\right) \cdot f_{s}\left(r_{2}\right)
\end{aligned}
$$

$$
\text { Also, } \begin{aligned}
f_{s}\left(r_{1}\right)= & f_{s}\left(r_{2}\right) \\
& \Rightarrow \frac{\mathrm{r}_{1} s}{S}=\frac{r_{2} s}{S} \\
& \Rightarrow \frac{\mathrm{r}_{1} S}{s}-\frac{r_{2} s}{s}=0 \\
& \Rightarrow \frac{\left(\mathrm{r}_{1}-r_{2}\right) s}{s}=0 \\
& \Rightarrow \frac{\left(\mathrm{r}_{1}-r_{2}\right)}{s}=0 \\
& \Rightarrow \frac{\mathrm{r}_{1}}{s}-\frac{r_{2}}{s}=0 \\
& \Rightarrow \frac{\mathrm{r}_{1}}{s}=\frac{r_{2}}{s}
\end{aligned}
$$

Hence f_{s} is monomorphism.

REFERENCE

1. Clay James R and Lawver, Donald, A (1969). The concepts of Boolean like near-ring and special Boolean like near-ring, Canad. Math. Bull., 12, 265273
2. Foster A L, (1946). The theory of Boolean like rings, Trans. Amer. Math. Soc, 59.
3. Gopalakrishnamoorthy G, Kamaraj M and Geetha S (2013). On Quasi weak commutative near- ring, Int.

Jour. of Math. Research, 5(5):431440.
4. Ketsela Hailu, Berhanu, Bekela, Belayneh, Zelabesm, Teshome and Venkateswarlu K (2012). Boolean like semi ring, of fractions, Inter. Jour. of Math. Archive, 3(4):1554-1560.
5. Ligh Steve, (1969). On Boolean near- rings, Bull. Austral. Math. Soc, 1:3756-379.
6. Luh J, Wang J and Chung L (1975). On Quasi Boolean rings and

Generalized quasi Boolean rings, Mathematica Japonica, 20:43-47.
7. Pliz Gunder (1983). The Theory and its Applications, Near-rings (Revised Edition) Northern Holland,
8. Swaminathan V (1982). Boolean Like rings, Ph.D. Dissertation, Andhra University, India,
9. Swaminathan V (1980). On Fosters Boolean like rings, Math. Seminar Notes, Kobe University, Japan, 8:347-367.
10. Subrahmanyam $\mathrm{N} V$ (1962). Boolean semi rings, Math. Ann. 148:395-401.

