

International Multidisciplinary Innovative Research Journal An International refereed e-journal

> ISSN: 2456 - 4613 Volume - III (2) April 2019

GENERALIZATION OF W-FUZZY MAPPINGS

ANBUCHELVI.M Associate Professor of Mathematics V.V. Vanniaperumal College for Women, Virudhunagar Tamil Nadu, INDIA

Corresponding author: mail: rsanbuchelvi@gmail.com

ABSTRACT

This paper aims to introduce two new classes of mappings via r-fuzzy w-closed sets in the sense of S ostak The class of r-fuzzy w-closed sets is nothing but the generalization of w-fuzzy closed sets. Some of it's basic properties have been analyzed by giving simple proofs and suitable examples. Mappings like r-fuzzy w-continuity and r-fuzzy closed have been introduced and some theorems based on these mappings have been investigated.

Keywords: *r*-*w*-fuzzy closed sets, *r*-fuzzy continuous function, *r*-fuzzy *w*- Homeomorphisms.

1. INTRODUCTION

Chang [1] introduced the concept of fuzzy topological space. S ostak [8] developed the structure of topology in other way as generalizations of Chang's fuzzy topology. Ramadan [6] and Chattopadhyay et al [2,3] introduced a similar definition in the name of smooth topological space. Levine [5] introduced the concept of generalized closed sets in topological space. In 2000, Sundaram et al [9] introduced $\boldsymbol{\omega}$ -closed sets. In 2004, Kim and Ko [4] developed r-generalized closed sets in fuzzy topological space. In this paper, the notion of r-fuzzy $\boldsymbol{\omega}$ – closed sets is introduced and it's basic properties have been investigated. Also, the mappings such as r-fuzzy $\boldsymbol{\omega}$ – continuous, r-fuzzy $\boldsymbol{\omega}$ – irresolute r-fuzzy $\boldsymbol{\omega}$ –closed map, r-fuzzy $\boldsymbol{\omega}$ –open map have been introduced and their properties are studied.

2. Preliminaries:

Definition 2.1:[3, 8] A fuzzy topology on X is a map $\tau: I^X \to I$ which satisfies the following conditions:

- (1) $\tau(\bar{0}) = \tau(\bar{1}) = 1$,
- (2) $\tau(\mu_1 \land \mu_2) \ge \tau(\mu_1) \land \tau(\mu_2)$
- (3) $\tau(\forall \mu_i) \ge \land \tau(\mu_i)$

The pair (X, τ) is called a fuzzy topological space. A fuzzy set α is called r-fuzzy open set (or fuzzy r-open set) if $\tau(\alpha) \ge r$ and r-fuzzy closed set (or fuzzy r-closed set) if $\tau(\overline{1} - \alpha) \ge r$.

Definition 2.2: [3] Let (X, τ) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-closure is defined by $cl(\mu, r) = \Lambda\{\rho \in I^X : \mu \le \rho, \tau(\overline{1} - \rho) \ge r\}$ and fuzzy r-interior is defined by

 $\operatorname{cl}(\mu, r) = \bigwedge \{ \rho \in I^X : \mu \le \rho, \ \tau(1 - \rho) \ge r \}$ and fuzzy r-interior is define $\operatorname{int}(\mu, r) = \bigvee \{ \rho \in I^X : \mu \ge \rho, \ \tau(\rho) \ge r \}.$

Moreover, μ is fuzzy r-closed if and only if $cl(\mu, r) = \mu$.

Definition 2.3: [7] A fuzzy set μ in a fuzzy topological space (X, τ) is said to be fuzzy rsemiopen if there exists a fuzzy r-open set α such that $\alpha \leq \mu \leq cl(\alpha, r)$ and fuzzy rsemiclosed if there exists a fuzzy r-closed set α such that $int(\alpha, r) \leq \mu \leq \alpha$.

Definition 2.4: [4] A fuzzy set μ in a fuzzy topological space (X, τ) is said to be r-fuzzy generalized closed set if $cl(\mu, r) \le \rho$ whenever $\mu \le \rho$ and ρ is r-fuzzy open set of X. The complement of r-fuzzy generalized closed set is r-fuzzy generalized open set.

Definition 2.5: [7] Let f: $(X, \tau) \to (Y, \rho)$ be a map and $r \in I_0$. Then f is called a fuzzy rcontinuous map if if $f^{-1}(\mu)$ is a fuzzy r-open set of X for each fuzzy r-open set μ of Y.

33. r-fuzzy ω –closed sets.

Definition 3.1: Let (X, τ) be a fuzzy topological space. A fuzzy set $\alpha \in I^X$ is said to be r-fuzzy ω closed (in short, r-f ω c) set if $cl(\alpha, r) \leq \mu$ whenever $\alpha \leq \mu$ and μ is a fuzzy r-semiopen set. The complement of r-fuzzy ω closed set is r-fuzzy ω open set.

Example 3.2: Let X=I. Define three fuzzy sets μ_1 , μ_2 and μ_3 on X as follows

$$\mu_1(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2} \\ 2x - 1 & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$
$$\mu_2(x) = \begin{cases} 1 & \text{if } 0 \le x \le \frac{1}{4} \\ -4x + 2 & \text{if } \frac{1}{4} \le x \le \frac{1}{2} \\ 0 & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$

$$\mu_3(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{4} \\ \frac{4x-1}{3} & \text{if } \frac{1}{4} \le x \le 1 \end{cases}$$

Define
$$\tau : I^X \to I$$
 by $\tau(\mu) = \begin{cases} 1 & \text{if } \mu = \overline{0} \text{ or } \overline{1} \\ \frac{1}{4} & \text{if } \mu = \mu_1, \mu_2, \mu_1 \land \mu_2 \\ 0 & \text{otherwise.} \end{cases}$

Now τ is a fuzzy topology on X. Also, the fuzzy sets μ_1^c and μ_2^c are $\frac{1}{4}$ - fuzzy ω closed sets.

Proposition 3.3: Every r-fuzzy closed set is r-fuzzy ω closed set but the converse is not necessarily true.

Proof: Let α be any r-fuzzy closed set and μ be a fuzzy r-semiopen set such that $\alpha \leq \mu$ in a fuzzy topological space (X, τ). By [3], $\alpha = cl(\alpha, r)$, so that α is a r-fuzzy ω closed set.

Proposition 3.4: In a fuzzy topological space (X, τ), r-fuzzy ω closed set α is r-fuzzy closed set provided α is a fuzzy r-semiopen set.

Proof: Given α is both r-fuzzy ω closed set and fuzzy r-semiopen set in a fuzzy topological space (X, τ) . By hypothesis, $cl(\alpha, r) \leq \alpha$. Always, $cl(\alpha, r) \geq \alpha$ and so $cl(\alpha, r) = \alpha$ which shows α is r-fuzzy closed set.

Proposition 3.5: Every r-fuzzy ω closed set is r- generalized fuzzy closed set and the converse does not hold as in Example 3.7.

Proof: Let α be any r-fuzzy ω closed set in a fuzzy topological space (X, τ). Let $\alpha \leq \mu$ where μ is a fuzzy r-open set in (X, τ). By [7], μ is a fuzzy r-semiopen set. By hypothesis, $l(\alpha, r) \leq \mu$. Then, α is r-generalized fuzzy closed set.

Proposition 3.6: If α is r-fuzzy ω closed set in a fuzzy topological space (X, τ) and suppose $\alpha \le \mu \le cl(\alpha, r), \ \mu \in I^X$, then μ is r-fuzzy ω closed set.

Proof: Let ρ be any fuzzy r-semiopen set such that $\mu \leq \rho$. By hypothesis and by definition 3.1, $cl(\alpha, r) \leq \rho$. Again by hypothesis, $\mu \leq cl(\alpha, r)$. By [3], $cl(\mu, r) \leq cl(cl(\alpha, r), r) = cl(\alpha, r)$. Now $l(\mu, r) \leq cl(\alpha, r) \leq \rho \Rightarrow cl(\mu, r) \leq \rho$, so that μ is r-fuzzy ω closed set.

Theorem 3.7: For any $r \in I_0$, α is r-fuzzy ω closed set in a fuzzy topological space (X, τ) if and only if $\alpha \bar{q} \mu \Longrightarrow cl(\alpha, r) \bar{q} \mu$ where μ is fuzzy r-semiclosed set.

Proof: Suppose that α is r-fuzzy ω closed set in a fuzzy topological space $(X, \tau), r \in I_0$ and μ is fuzzy r-semiclosed set such that $\alpha \bar{q}\mu$. Then, $\alpha \leq \bar{1} - \mu$. Since complement of fuzzy r-semiclosed set is fuzzy r-semiopen set, $\overline{1} - \mu$ is fuzzy r-semiopen. By definition 3.1, $cl(\alpha, r) \leq \overline{1} - \mu$ which implies $cl(\alpha, r)\overline{q}\mu$.

Conversely, assume that the given condition holds. Let μ be any fuzzy r-semiopen set such that $\alpha \leq \mu$. Then, $\alpha \overline{q}(\overline{1} - \mu)$. By hypothesis, $cl(\alpha, r)\overline{q}(\overline{1} - \mu)$. Again, $cl(\alpha, r) \leq \mu$ which says by definition 3.1, α is r-fuzzy ω closed set.

Theorem 3.8: In a fuzzy topological space (X, τ) , if x_p is a fuzzy point in X and α is any r-fuzzy ω closed set such that $x_pqcl(\alpha, r)$, then $cl(x_p)q\alpha$.

Proof: On contrary, assume that x_p is a fuzzy point in X and α is any r-fuzzy ω closed set in a fuzzy topological space (X, τ) such that $cl(x_p)\bar{q} \alpha$. Then, $cl(x_p) \leq (\bar{1} - \alpha)$ or $\leq (\bar{1} - cl(x_p))$. Since $cl(x_p)$ is a r-fuzzy closed set and by [..], $cl(x_p)$ is a fuzzy r-semiclosed set. Since α is r-fuzzy ω closed set by definition 3.1,

$$cl(\alpha, r) \le (1 - cl(x_p)) \le (1 - x_p)$$
. Now, $cl(\alpha, r)\overline{q} x_p$

a contradiction. Hence the Theorem.

4. R-fuzzy ω-Continuous Functions and R-fuzzy ω-Homeomorphisms

Definition 4.1: Let (X, τ) and (Y, ρ) be any two fuzzy topological spaces. A mapping f: $(X, \tau) \rightarrow (Y, \rho)$ is called

- (1) r-fuzzy ω -continuous if $f^{-1}(\mu)$ is a r-fuzzy ω open set in X for any $\mu \in I^Y, r \in I^0$ such that $\rho(\mu) \ge r$.
- (2) r-fuzzy ω -irresolute if $f^{-1}(\mu)$ is a r-fuzzy ω open set in X for any r-fuzzy ω open set μ in Y.
- (3) r-fuzzy ω -open (resp. r-fuzzy ω -closed) if $f(\mu)$ is r-fuzzy ω open (resp. r-fuzzy ω closed) set in Y for any $\mu \in I^X$, $r \in I^0$ such that $\tau(\mu) \ge r$ (resp. $\tau(\overline{1} \mu) \ge r$).

Proposition 4.2: A mapping f: $(X, \tau) \rightarrow (Y, \rho)$ is r-fuzzy ω -continuous iff pre image of any r-fuzzy closed set of Y is

r-fuzzy ω -closed set of X.

Proof: Let μ be any r-closed set of Y. Then $(\bar{1} - \mu)$ is r-fuzzy open set of Y. By hypothesis, $f^{-1}(\bar{1} - \mu) = \bar{1} - f^{-1}(\mu)$ is r-fuzzy ω open set of X. Now, $f^{-1}(\mu)$ is r-fuzzy ω -closed set

of X.

Conversely, let $\alpha \in I^{Y}$ be such that $\rho(\alpha) \ge r$ for any $r \in I_{0}$. Then,

 $\rho(\alpha) = \rho(\overline{1} - (\overline{1} - \alpha)) \ge r$ which gives $(\overline{1} - \alpha)$ is a r-fuzzy closed set of Y. By hypothesis, $f^{-1}(\overline{1} - \alpha) = \overline{1} - f^{-1}(\alpha)$ is r-fuzzy ω -closed set of X in turns $f^{-1}(\alpha)$ is r-fuzzy ω -open set of X. Hence the result.

Proposition 4.3: Every fuzzy r-continuous function is r-fuzzy ω -continuous map.

Proof: It follows from the Proposition 3.3.

Proposition 4.4: Let $f: (X, \tau) \to (Y, \rho)$ is a r-fuzzy ω -continuous function. Then the following statements hold.

i) for any fuzzy point x_p of X and for any r-fuzzy open set α of Y such that $f(x_p) \in \alpha$, there exists a r-fuzzy ω open set μ of X such that $f(\mu) \leq \alpha$.

ii) for any r-fuzzy open set α of Y and for any fuzzy point x_p of X such that $f(x_p)q\alpha$, there exists a r-fuzzy ω open set μ of X such that $x_pq\mu$ and $f(\mu) \leq \alpha$.

iii) for any r-fuzzy continuous map g: $(Y, \rho) \rightarrow (Z, \eta)$, the composition mapping gof: $(X, \tau) \rightarrow (Z, \eta)$ is r-fuzzy ω -continuous map.

Proof: i) Let x_p be any fuzzy point of X and α be any r-fuzzy open set of Y such that

 $f(x_p) \in \alpha$. By hypothesis, $f^{-1}(\alpha)$ is

r-fuzzy ω -open set of X such that $x_p \in f^{-1}(\alpha)$.

By taking $\mu = f^{-1}(\alpha)$, it leads to $f(\mu) = f(f^{-1}(\alpha)) \leq \alpha$.

ii) Let x_p be any fuzzy point of X and α be any r-fuzzy open set of Y such that $f(x_p)q \alpha$. By hypothesis, $f^{-1}(\alpha)$ is r-fuzzy ω -open set of X such that $x_p q f^{-1}(\alpha)$ By taking $\mu = f^{-1}(\alpha)$, $f(\mu) \leq \alpha$.

iii)Let α be any r-fuzzy open set of Z. By hypothesis, $g^{-1}(\alpha)$ is

r-fuzzy open set of Y.

By hypothesis, $f^{-1}(g^{-1}(\alpha)) = (gof)^{-1}(\alpha)$ is r-fuzzy ω -open

set of X. Hence (iii) holds.

Proposition 4.5: Let $f: (X, \tau) \to (Y, \rho)$ is a r-fuzzy ω -irresolute mapping. Then the following statements hold.

(1) i)for any fuzzy point x_p of X and for any r-fuzzy ω open set α of Y such that f(x_p) ∈ α, there exists a r-fuzzy ω open set μ of X such that f(μ) ≤ α.
ii)for any r-fuzzy ω open set α of Y and for any fuzzy point x_p of X such that f(μ) ≤ α.
ii)for any r-fuzzy ω open set α of Y and for any fuzzy point x_p of X such that f(μ) ≤ α.
iii)for any r-fuzzy ω-irresolute map g: (Y, ρ) → (Z, η), the composition mapping gof: (X, τ) → (Z, η) is r-fuzzy ω-irresolute function.

Proof: i) Let x_p be any fuzzy point of X and α be any r-fuzzy ω open set of Y such that $f(x_p) \in \alpha$. By hypothesis, $f^{-1}(\alpha)$ is r-fuzzy ω -open set of X such that $x_p \in f^{-1}(\alpha)$. By taking $\mu = f^{-1}(\alpha)$, *it leads to* $f(\mu) = f(f^{-1}(\alpha)) \leq \alpha$. ii) Let x_p be any fuzzy point of X and α be any r-fuzzy ω open set of Y such that

 $f(x_p)q \alpha$. By hypothesis, $f^{-1}(\alpha)$ is r-fuzzy ω -open set of X such that $x_p q f^{-1}(\alpha)$ By taking $\mu = f^{-1}(\alpha)$, $f(\mu) \le \alpha$.

iii)Let α be any r-fuzzy ω open set of Z. By hypothesis, $g^{-1}(\alpha)$ is r-fuzzy open set of Y. By hypothesis, $f^{-1}(g^{-1}(\alpha)) = (gof)^{-1}(\alpha)$ is r-fuzzy ω -open set of X. Hence iii) holds.

Theorem 4.6: A mapping f: $(X, \tau) \to (Y, \rho)$ is r-fuzzy ω -closed if and only if for each $\lambda \in I^{Y}$ and for each r-fuzzy open set μ of X such that $f^{-1}(\lambda) \leq \mu$, there exists a r fuzzy ω open set η of Y such that $\lambda \leq \eta$ and $f^{-1}(\eta) \leq \mu$.

Proof: Let $\lambda \in I^{\gamma}$ and μ be any r-fuzzy open set of X such that $f^{-1}(\lambda) \leq \mu$. Then, $\overline{I} - \mu$ is r-fuzzy closed set of X. By hypothesis, $f(\overline{I} - \mu)$ is r-fuzzy ω -closed set in Y. Then, $\overline{I} - f(\overline{I} - \mu)$ is r-fuzzy ω -open set in Y. By choosing $\eta = \overline{I} - f(\overline{I} - \mu)$, η is a r-fuzzy ω -open set in Y such that $\lambda \leq \eta$ and $f^{-1}(\eta) \leq \mu$.

Conversely, let α be any r-fuzzy closed set

Clearly $f(\alpha) \in I^{Y}$ and $f^{-1}(\overline{I} - f(\alpha)) = \overline{I} - f^{-1}(f(\alpha)) \leq \overline{I} - \alpha$. Now $\overline{I} - \alpha$ is r-fuzzy open set in X such that $f^{-1}(\overline{I} - f(\alpha)) \leq \overline{I} - \alpha$. By hypothesis, there exists r

fuzzy ω open set η of Y such that $(\overline{l} - f(\alpha)) \leq \eta$ and

 $f^{-1}(\eta) \leq \overline{l} - \alpha$ and hence $\alpha \leq \overline{l} - f^{-1}(\eta)$. Now, $\overline{l} - \eta \leq f(\alpha) \leq f(\overline{l} - f^{-1}(\eta)) \leq \overline{l} - \eta$ and so $f(\alpha) = \overline{l} - \eta$. Then $f(\alpha)$ is r-fuzzy ω closed set in Y.

5. r-fuzzy *w*-Homeomorphsim:

Definition 5.1: A bijective mapping f: $(X, \tau) \rightarrow (Y, \rho)$ is called r-fuzzy ω -homeomorphsim if f and f^{-l} are r-fuzzy ω -continuous.

Theorem 5.2: For any bijective map $f: (X, \tau) \rightarrow (Y, \rho)$, the following are equivalent.

- (1) f is r-fuzzy ω -homeomorphsim
- (2) f is r-fuzzy ω -continuous and r-fuzzy ω -open map
- (3) f is r-fuzzy ω -continuous and r-fuzzy ω -closed map.

Proof(1) \Rightarrow (2)Let f be r-fuzzy ω -homeomorphsim. By definition 5.1, f and f^{-1} are r-fuzzy ω -continuous. It is enough to prove that f is r-fuzzy ω -open map. Let α be any r-fuzzy open set in X. Since f^{-1} : (Y, ρ) \rightarrow (X, τ) is r-fuzzy ω -continuous, $(f^{-1})^{-1}(\alpha) = f(\alpha)$ is r-fuzzy ω open set in Y. So f is r-fuzzy ω -open map.

(2) \Rightarrow (3) It is enough to prove that f is r-fuzzy ω -closed map. Let α be any r-fuzzy closed set in X. Then, $\overline{I} - \alpha$ is r-fuzzy open set in X. By hypothesis, $f(\overline{I} - \alpha)$ is r-fuzzy ω open set in Y and so $\overline{I} - f(\alpha)$ is r-fuzzy ω open set in Y. Hence $f(\alpha)$ is r-fuzzy ω closed set in Y. So,f is r-fuzzy ω -closed map.

(3) \Rightarrow (1) It is enough to prove that f^{-1} : (Y, ρ) \rightarrow (X, τ) is r-fuzzy ω -continuous. Let α be any r-fuzzy open set in X. Then $\overline{I} - \alpha$ is r-fuzzy closed set in X.

By hypothesis, $f(\overline{l} - \alpha) = \overline{l} - f(\alpha)$ is r-fuzzy ω closed set in Y. Now, $f(\alpha) = (f^{-1})^{-1}(\alpha)$ is r-fuzzy ω open set in Y. So, f^{-1} is r-fuzzy ω -continuous.

CONCLUSION

In this paper, we have introduced the notion of r-fuzzy ω - closed sets in the fuzzy topological space in the sense of Sostak A.P which is a generalization of Chang's fuzzy topology. By using the class of r-fuzzy ω - closed sets, some functions have been defined and they are used in developing the notion of r-fuzzy ω -homeomorphism. The above results can be extended to fuzzy soft topological space and intuitionist fuzzy topological spaces.