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ABSTRACT 

 In  this  paper, we  introduce  the   a  concept  of  Geometric  Mean  Cordial  Labeling  of  

  m – Subdivision of Graphs  which is a  kind  of  cordial labeling [2].  We  construct  m – 

subdivision  of    graphs  for  standard   graphs  such  as  path  and  cycle and  expand  path  and  

cycle by  applying the  operation  subdivision [ 2.2 ]. Also we  check  whether  the  m-subdivision of  

graphs are geometric mean cordial  graphs or  not.     

Keywords: Geometric mean cordial labeling, geometric mean cordial graph, path, cycle, subdivision,  
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 1.  INTRODUCTION   

 Today, Graph labeling [3]   especially  cordial  labeling  [2]   plays  an  important  role  in  the   

study  of   Graph  Theory [1]  in  Mathematics. Many   problems  in  network  communication [1]  use  

this  cordial  labeling  for  data  organization, computational  devices  and  for  the  flow of  

computation.  Cordial  labeling [2] was  first introduced  by  Cahit  in the  year 1987. Using the concept 

of geometric mean  cordial  labeling, we   investigate  whether   m –  subdivision  of    graphs   admit  

geometric mean cordial   labeling  or   not. The   m –  subdivision  of   graphs  give  a  long expansion  

and  growth to the  connected  graphs [4] such  as  path,  cycle  etc.    
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2.  m – Subdivision  of   Graphs 

Definition 2.1. [4 , 6]  A  subdivision  of   an  edge   e  of  a  graph  G  is  the  subdivision of  

edge  by  introducing  new  vertices.  

  

Definition 2.2. [1]  A    subdivision    of    a   graph   G     denoted    by    S ( G )  (known   as  

 sometimes   expansion  )   is   a   graph    resulting    from    the    subdivision   of   edges   in   G.   The   

 subdivision   of    some     edge    with    the    end    points   u   and  v     yields    a    graph    containing   

one  new  vertex  w,  and  with  the  edge  set  replacing  e  by  two  edges  uw  and  wv . 

 

Definition  2.3.  The   operation  Sm ( G )  of    a   graph  G   is   a   graph  G  resulting  from  the   

subdivision  of   edges  by  m  vertices  in   G .  

For  m = 1,  S1 ( G ) = S( G )  where  S ( G )  denotes  subdivision of   G.  

For  m ≥ 2,  Sm ( G ) = S ( Sm-1 (G) ). 

 

 Definition  2.4. [6]  Let  G =  ( V, E )   be   a   graph  and  f   be   a  mapping  from   V (G) → {0, 1, 2}. 

 For   each   edge  uv,   assign  the   label  Γ )()( vfuf  
˥ ,   f   is   called  a   geometric  mean  cordial  labeling  if  

 | vf ( i ) –  vf ( j )|  ≤  1     and     | ef ( i ) – ef ( j )|  ≤  1,    where   vf  ( x )  and   ef  ( x )   denote   the   number   of    

vertices    and    edges   labeled   with  x,    x   { 0, 1, 2 }   respectively.  A   graph  with    a    geometric   mean   

cordial   labeling   is  called   geometric   mean   cordial   graph.  

 

Result  2.5.  The  subdivision of  the graph Pn   is  S ( Pn  )   P2n - 1  where  P2 n- 1  is  a  path   of   2n – 1   

                     vertices  and   2n - 2  edges. 

Result  2.6.  The  subdivision  of  the   graph  Cn   is S ( Cn  )   C2n  where C2n  is  a  cycle  of  2n  

vertices    and   2n  edges. 

3.  m - subdivision  of  standard  graphs. 

     Path. 

From  the  Result  2.5,  it  follows  that  S ( Pn  )   P2n – 1   where  P2 n- 1  is  a  path  of  

 2n – 1  vertices  and   2n - 2  edges. 

Now S1 ( Pm+1  ) = S ( Pm + 1  ) =  P2 ( m + 1 ) – 1  = P2 m  + 1                          

                    S2( Pm + 1 )  = S ( S1 ( Pm + 1 ) )  = S ( P2m + 1 )  =  P2 ( 2m  + 1 )  - 1    = P4m  +  1         

                   S3( Pm + 1 )  = S ( S2 ( Pm + 1 ) ) = S ( P4m + 1  )  =  P 2 ( 4m  + 1 )  - 1   = P8 m  +  1 

In  general,  we  have   

Sm ( Pm + 1 ) = S ( Sm-1 ( Pm + 1 ) ) = S ( P ( 2
m-1

 . m  ) +  1 )  =  P  2 ( 2
m-1

 .  m  + 1  )  - 1 = P ( 2
m
 .  m  ) +  1 

Then   Sm
 
( Pm+1 )  is a  path  of  ( 2

m
 .  m  )   + 1   vertices  and   2

m
 .  m  edges. 
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Cycle. 

From  the  Result  2.6,  it  follows  that   S ( Cn  ) = C2n  where  C2n  is  a  cycle  of  2n   

 vertices   and   2n  edges. 

 Now   S1 ( Cn )  = S ( Cn)  =  C2n      

                       S2( Cn )  = S ( S1 ( Cn ) ) = S ( C2n )  =  C4n       

                      S3( Cn )  = S( S2 ( Cn ) ) = S ( C4n  ) =  C8n           

                      Sm-1( Cn )    = S ( Sm-2 ( Cn ) )  =  S (C 2
m-2

. n)  = C2.2
m-2

. n  = C2
m-1

. n 

 In  general, we  have,   Sm ( Cn ) = C2
m
. n                 

  Then   Sm( Cn )  is a  cycle  of   2
m
 .  n    vertices  and  2

m
 .  n  edges. 

 

 4.  Geometric  mean  cordial  labeling  of  m – subdivision  of   graphs. 

The  following  results  will  be  used  to  find  geometric  mean  cordial labeling  of  m- subdivision  of  

graphs. 

Theorem 4.1. [ 5 ]  The  path  Pn  is  geometric  mean  cordial. 

Theorem 4.2. [ 5 ]  The  cycle  Cn  is  geometric  mean  cordial  when  n ≡ 1, 2 ( mod3 ). 

 

Theorem  4.3.  S( Pn )  is  geometric  mean  cordial. 

Proof:   Let  Pn :  u1,  u2, … , un   be   the   path  of   n   vertices  and   n – 1   edges.  We   subdivide  the  

 n – 1    edges    of    Pn.   Now    we    get    n – 1   subdivisional  vertices.   Let  s1,  s2, …, sn-1    be   the   

subdivisional   vertices  of    Pn.   From   the   Result  2.5,   it   follows   that  S ( Pn  )    P2n – 1   where 

P2 n- 1  is   a  path  of   2n – 1  vertices  and  2n - 2  edges.  From  the  Theorem 4.1 [ 5 ],   it  follows  that  

S( P1 )   P1  and   S ( P2 )   P3    which   are    geometric  mean   cordial. This   Theorem  is  dealt   

according  to  3   cases  by   using  congruence  modulo  n. 

Case ( i ) :  n ≡  0 ( mod3 ).  Let  n  =  3t, t  ≥  1 

                  Now  the  path  P2n  -  1  has  6t  -  1  vertices  and  6t  –  2  edges. Let  V( P2n-1 ) = V1V2   

where V1= { u1, u2, …, un }  and  V2= { s1, s2, …, sn-1 } 

Define  the  function  f  : V1   { 0, 1, 2 }    for   3t   vertices   of   Pn   by   

f ( ui )           = 2,   ti 1 ,  

f ( u i + t )      = 1,   ti 1 , 

f ( u  i + 2 t )   = 0,     ti 1 .    

 Consider   vertices  of  V2  If   t = 1,  then   there   exists   2   sub divisional   vertices.  The  possible   

labeling   of    these   two   sub divisional    vertices    namely   s1   and   s2    are   1  and   0,   or   1  and  2  or  2   

and  1.  In    these   three   combinations,  we  get   geometric  mean  cordial.   

 If   t   >  1,   3t  - 1   subdivisional    vertices   are   labeled   according   to   the  following  function. 
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                             f ( si )            = 2,     11  ti ,  

                                                  = 1,     12  tit , 

                                                  = 0,     132  tit . 

 Then   vf ( 0 ) =  2t,   vf ( 1 ) = 2t ,       vf ( 2 ) =  2t - 1,        

            ef ( 0 ) =  2t,   ef ( 1 ) = 2t - 1 ,  ef ( 2 ) =  2t – 1.      

Case ( ii ) :  n ≡ 1( mod3 ).   Let  n  =  3t + 1, t  ≥  1 

Now  the  path  P2n  -  1  has  6t  +  1   vertices  and   6t    edges.  Let  V( P2n-1 ) = V1V2   

where V1= { u1, u2, …, un }  and  V2= { s1, s2, …, sn-1 } 

Define  the  function   f  : V1  { 0, 1, 2 }   for  3t + 1   vertices  of  Pn   by   

                                    f ( ui )           = 2,     ti 1 ,  

                                    f ( u i + t )       = 1,     11  ti , 

                                    f ( u  1 + i + 2 t )  = 0,    ti 1 . 

Consider   vertices  of  V2 

                                    f ( si )            = 2,       ti 1 ,  

                                                         = 1,        tit 21  , 

                                                         = 0,        tit 312  . 

Then   vf ( 0 ) =  2t  , vf ( 1 ) =2 t + 1 ,  vf ( 2 ) = 2t,     

            ef ( 0 ) =  2t  , ef ( 1 ) = 2t  ,       ef ( 2 ) = 2t.      

 Case ( iii ):  n ≡ 2( mod3 ). Let  n  =  3t+ 2. 

                Now  the  path  P2n  -  1  has  6t + 3   vertices  and  6t + 2   edges.   Let V( P2n-1 ) = V1V2   

where V1= { u1, u2, …, un }  and  V2= { s1, s2, …, sn-1 } 

Define  the  function  f  : V1   { 0, 1, 2 }  for   3t + 2  vertices  of  Pn   by   

                                    f ( ui )            = 2,    ti 1 ,  

                                    f ( u i + t )        = 1,    11  ti , 

                                    f ( u  1 + i + 2 t )  = 0,   11  ti . 

Consider   vertices  of  V2 

                                    f ( si )            = 2,     ti 1 ,  

                                                         = 1,     tit 21  , 

                                                         = 0,     1312  tit . 

Then   vf ( 0 ) =  2t + 2,    vf ( 1 ) = 2t + 1,    vf ( 2 ) =2t,           

                         ef ( 0 ) = 2t + 2,    ef ( 1 ) = 2t ,           ef ( 2 ) = 2t. 

The   labeling   defined  does   not   satisfy    the   vertex   and   edge   condition.  To  make  it  into  a  

geometric   mean   cordial   labeling,   we  change  the  vertex   labeled   0   which  is   adjacent  to  1  by  the  

labeling  2. We  get  vf ( 0 ) =  2t + 1  ,  vf ( 1 ) = 2t + 1  ,  vf ( 2 ) =2t +1.   

In   this   case,  we   get   ef ( 0 ) = 2t + 1    ef ( 1 ) = 2t  ,  ef ( 2 ) = 2t  + 1. 
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 Now   it  satisfies  both  the   vertex   and   edge   condition.  

In   all   the   three   cases,  we   see   that    | vf  ( i ) – vf ( j ) |  ≤  1   and    | ef ( i ) – ef ( j ) |  ≤  1    for   all  

 i,  j    {0, 1, 2},   f   is  a  geometric   mean   cordial  labeling  and  hence  the  subdivision of  a  graph  S (Pn )  is  

geometric  mean  cordial. 

Example  4.4.  Geometric  mean  cordial  labeling  of  S ( P6 )  is  given  below. 

               2            2           1            0          0                           2       2          2           1          1           1            0           0            0           0 

   

        2           2           1            1          0          0               2      2       2       1     1      1      1       0       0       0      0 

P6                                                                        S ( P6 )    P 11 

Here,  in  S ( P6 ),  vf  ( 0 )  =  4,  vf  ( 1 )  =  4,  vf  ( 2 )  = 3  and   ef  ( 0 )  =  4,  ef  ( 1 )  =  3, ef  ( 2 )  =  3. 

Example  4.5. Geometric  mean  cordial  labeling  of  S ( P7 )  is  given  below. 

     2               2              1               1               0             0                                        2            2          2          2           1         1          1          1         0         0           0           0                                                                                            

   

2       2         1          1         1         0        0              2       2      2      2     1     1       1     1     1     0      0      0      0 

P7                                                                      S ( P7 )    P 13 

                 Here,   in  S ( P7 ),   vf  ( 0 ) = 4,  vf  ( 1 ) = 5,  vf  ( 2 ) = 4  and    ef  ( 0 ) =  ef  ( 1 ) =  ef  ( 2 ) = 4.. 

Example  4.6.  Geometric  mean  cordial  labeling  of  S ( P8 )  is  given  below. 

     2          2           1            1            0           0            0                                   2          2         2          2          1         1         1           1        0         0          0       0        0         0  

   

2      2      1       1      1       0       0       0              2     2     2     2      1     1     1      1     1     0      0     0     0     0    0 

P8                                                                      S ( P8 )    P 15 

                Here,  in  S( P8 ),  vf  ( 0 ) = 6,  vf  ( 1 ) = 5,  vf  ( 2 ) = 4  and   ef  ( 0 ) = 6, ef  ( 1 ) = 4, ef  ( 2 ) = 4. 

We  see  that  the above  labeling  is  not  geometric  mean  cordial  labeling. To  make   the  geometric 

  mean  cordiality, we change  the  label  as  follows. 

                                                                                                    2 

                                                             2          2         2          2         1         1         1           1        0         0          0       0        0         0  

   

                                      2      2     2      2     1     1     1      1     1     0      0     0     0     0    0 

                         2                                                            

  Now    vf  ( 0 ) = 5,  vf  ( 1 ) = 5,  vf  ( 2 ) = 5  and   ef  ( 0 ) = 5, ef  ( 1 ) = 4, ef  ( 2 ) = 5. 

 

Theorem 4.7.  Sm ( P m +  1 )  is  geometric  mean  cordial. 

Proof.  We  know  that   Sm ( Pm + 1 )  is  a  graph  of  2
m
 . m + 1   vertices  and  2

m
. m  edges. The  

theorem  is  easily  verified  for  m =  0, 1, 2. If   m = 0, we   get  a  graph  P1  and  is  of   1 vertex   

and   no  edge. Now  the  graph  has  no  subdivision. If   m = 1, we get subdivision   
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of   a   graph  S1
 
( P2 ) =  S ( P2 )   P3,  From   the  Theorem 4.1  [ 5 ],  it  follows   P3  is  geometric  

mean cordial,  S1( P2 )  is geometric  mean  cordial.  If   m = 2,  we   get  a  subdivision of  a   graph   

 S2
 
( P3 )=  S( S1 ( P3)  ) =  S ( P3 ).   P5. From  the Theorem 4.1  [ 5 ],  it  follows  P5  is  geometric  

mean  cordial,  S2( P3 )  is  geometric  mean  cordial and  hence  S ( Pn ) is  geometric  mean  cordial.  

Case ( i ) :  m ≡ 0 ( mod3 ).  Let  m  =  3t,  t  ≥  1. 

                    Now  the  path   has  ( 2
3t

 .  3t  ) + 1   vertices  and   2
3t

 .  3t  edges. The  labeling  is  as  follows. 

If  we  assign  0
’s
   to   2

3t
 .  t     vertices,  1’s

   to   2
3t

 .  t   + 1   vertices and  2’s
   to   2

3t
 .  t     vertices,  then 

vf ( 0 ) =  2
3t

 .  t  ,  vf ( 1 ) = 2
3t

 .  t  +  1 ,  vf ( 2 ) =  2
3t

 .  t   and  

ef ( 0 ) = 2
3t

 .  t   ,  ef ( 1 ) =  2
3t

 .  t  ,    ef ( 2 ) =  2
3t

 .  t ,    

 In  this  case,  we  see  that   | vf ( i )  –  vf ( j )|  ≤  1  and    | ef ( i ) – ef ( j )|  ≤  1  for  all  i,  j    {0, 1, 2},   

  f  is  a  geometric  mean  cordial  labeling  and  hence  the  m  –  subdivision   of    a  graph  Sm ( P m+ 1 )   is  a  

geometric  mean  cordial  graph. 

Case ( ii ) :  m ≡ 1 ( mod3 ). Let  m  =  3t + 1. 

                   Now  the  path   has  (  2
3t + 1

 . ( 3t  + 1  ) )  +  1   vertices  and   2
3t + 1

 . ( 3t + 1 )  edges. The  labeling  is  

as  follows.  There  are  two  subcases. 

Subcase ( i ):  vf ( 0 ) =  1
3

1))13(2( 13


 tt

 ,  vf ( 1 ) = 1
3

1))13(2( 13


 tt

,   

                          vf ( 2 ) = 
3

1))13(2( 13  tt

,  t = 1, 3, 5,….  

In  this  subcase,  we  get   ef ( 0 ) = 1
3

1))13(2( 13


 tt

  ,  ef ( 1 ) = 
3

1))13(2( 13  tt

  ,  

                               ef ( 2 ) = 
3

1))13(2( 13  tt

. 

Subcase ( ii ):  vf ( 0 ) =  1
3

2))13(2( 13


 tt

 ,  vf ( 1 ) = 1
3

2))13(2( 13


 tt

, 

                         vf ( 2 ) 1
3

2))13(2( 13


 tt

,  t = 2, 4, 6,…. 

 In  this  subcase,    we   get  ef ( 0 ) = 1
3

2))13(2( 13


 tt

  , ef ( 1 ) = 
3

2))13(2( 13  tt

  , 

                              ef ( 2 ) 1
3

2))13(2( 13


 tt

. 

                 

In  all  the  subcases,  we  see  that   | vf ( i )  –  vf ( j )|  ≤   1  and    | ef ( i )  –  ef ( j )|  ≤  1  for 

  all  i,  j    {0, 1, 2},    f  is  a  geometric  mean  cordial  labeling  and  hence  the   m – subdivision   of   a  graph  

Sm( P m+ 1 )   is  a  geometric  mean  cordial  graph. 
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Case ( iii ) :  m ≡ 2 ( mod3 ). Let  m  =  3t + 2. 

                    Now  the  path   has  ( 2
3t  + 2

 .  3t  +  2 ) + 1   vertices  and   2
3t  +  2

 .  3t  +  2  edges.   The  labeling  is  

as  follows.  There  are  two  subcases. 

Subcase ( i ):   vf ( 0 ) =  1
3

1))23(2( 23


 tt

 , vf ( 1 ) = 1
3

1))23(2( 23


 tt

,  

                          vf ( 2 ) = 
3

1))23(2( 23  tt

  t = 1, 3, 5,….   

In  this  subcase,  we  get  ef ( 0 ) = 1
3

1))23(2( 23


 tt

  , ef ( 1 ) = 
3

1))23(2( 23  tt

  ,   

                             ef ( 2 ) = 
3

1))23(2( 23  tt

.  

Subcase ( ii ):   vf ( 0 ) =  1
3

2))23(2( 23


 tt

 , vf ( 1 ) = 1
3

2))23(2( 23


 tt

,  

                          vf ( 2 ) = 1
3

2))23(2( 13


 tt

  t = 2, 4, 6,….   

In  this  subcase,  we  get   ef ( 0 ) = 1
3

2))23(2( 23


 tt

  , ef ( 1 ) = 
3

2))23(2( 23  tt

  ,   

                             ef ( 2 ) = 1
3

2))23(2( 23


 tt

. 

Now  we  see  that   | vf ( i )  –  vf ( j ) |  ≤  1  and    | ef ( i )  – ef ( j )|  ≤  1  for  all  i,  j    {0, 1, 2},  

 f    is   a  geometric   mean  cordial   labeling   and    hence   the   m  –  subdivision   of    a  graph  Sm ( P m+ 1 )   

is  a  geometric  mean  cordial  graph. 

 

Example 4.8.   Geometric  mean  cordial  labeling  of  S3( P4 )  is  given  below. 

                                                                           2                 1                 0          

                                                                                                   2                 1                1                0 

P4 

            2      2      2       2      2       2         2        2         1       1       1        1          1       1       1        1         0           0         0          0         0          0         0        0                                                                              

      

        2   2   2   2   2    2    2     2    1    1    1     1     1      1    1     1     1     0     0      0      0     0      0    0     0             

 

S3 ( P4 )    P 25 

Here  vf  ( 0 ) = 8,  vf  ( 1 ) = 9,  vf  ( 2 ) = 8  and    ef  ( 0 ) = 8, ef  ( 1 ) = 8, ef  ( 2 ) = 8. 
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Example 4.9.   Geometric  mean  cordial  labeling  of  S4 ( P5 )  is  given  below. 

               2        2   …   2                                  1         1   …   1                                     0          0   …   0                                                                           

   

        2          2        2    …   2       …            1          1         1   … 1         …            0           0           0  …   0 

 

S4 ( P5 )   P65 

Here  vf  ( 0 ) = 22,  vf  ( 1 ) = 22,  vf  ( 2 ) = 21  and  ef  ( 0 ) =  22 , ef  ( 1 ) = 21, ef  ( 2 ) = 21. 

 

Example 4.10.  Geometric  mean  cordial  labeling  of  S5 ( P6 )  is  given  below. 

               2        2  …    2                                  1         1    … 1                                     0          0    …  0                                                                           

   

        2          2        2   …   2       …            1          1          1  …  1         …            0           0           0   …  0 

 

S5 ( P6 )   P161 

Here  vf  ( 0 ) = 54,  vf  ( 1 ) = 54,  vf  ( 2 ) = 53  and  ef  ( 0 ) = 54, ef  ( 1 ) = 53, ef  ( 2 ) = 53.. 

 

Theorem  4.11 . S ( Cn )  is  geometric  mean  cordial    iff    n ≡ 1,2 ( mod3 ) 

Proof.  Let  Cn :  u1  u2  …  un   be   the   cycle   of   n  vertices  and   n   edges.  Let  s1,  s2, …, sn   be  

 the   subdivisional  vertices  of   Cn.  From  the   Result  2.6,  it  follows    that  S ( Cn )  is  C2n    and    

has   2n    vertices  and   2n  edges. This theorem  is  also  dealt  into  3  cases  by  using  congruence   

modulo  n. 

Case ( i ) :  n ≡ 0 ( mod3 ).   Let  n  =  3t. 

                         Now  the  cycle   C2n   has  6t   vertices  and  6t   edges.  Here    C2n   consists   of   3t   vertices 

  of   Cn     and    3t   subdivisional   vertices  in  order. If   S ( Cn )  admits  a  geometric  mean  cordial  labeling  

 f,   then  we   should   have   vf  ( 0 ) = vf  ( 1 ) = vf  ( 2 ) = 2t  and  ef  ( 0 ) = ef  ( 1 ) = ef  ( 2 ) = 2t  -------- ( 1 ). 

Consider  vf ( 0 ) = 2t.  If   we    assign    0’s  to    2t   number  of  vertices  in  S( Cn ),  then  we  get  

 ef  ( 0 ) >  2t,  a  contradiction  to ( 1). Hence  f  is   not  a  geometric  mean  cordial  labeling.   

 

Case ( ii ) : n ≡ 1 ( mod3 ). Let  n  =  3t + 1. 

                            Now  the  cycle   C2n   has  6t + 2  vertices  and  6t  + 2 edges.  Here    C2n   consists   of   3t +1  

vertices  of  Cn     and    3t + 1  subdivisional   vertices.  Assign  the  label  1  to  t + 1  vertices,  and  the  labels  0   

and  2  to   remaining  each   of   the   t  vertices   in  Cn  and  orderly  we   assign   the  same   labeling  to   3t + 1  

subdivisional  vertices  such  that   0  to  1
st 

  t   subdivisional  vertices  s1,  s2, …, st,   and  1 and  2   to   remaining    

s t +  1, s t +  2 ,…, s 2 t + 1  and  s 2 t + 2 ,  s 2 t  +  3, …..s 3 t + 1   respectively.   

Then   we   get, vf  ( 0 ) =2t,  vf  ( 1 )= 2t  +  2,  vf  ( 2 ) = 2t,  ef  ( 0 ) =2t+1,  ef  ( 1 )= 2t  +  1,  ef  ( 2 ) = 2t, and  

now  it    does  not   satisfy  vertex  labeling.  To  make   it   into  geometric   mean   cordial  labeling,  we  change  
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the  one  vertex  labeled  1  adjacent  to  2  by  the  labeling  2,  then  we   get  vf  ( 0 ) = 2t,   vf  ( 1 ) = 2t  + 1, vf  ( 

2 ) = 2t + 1  and   ef  ( 0 ) =  2t + 1,  ef  ( 1 ) =  2t,   ef  ( 2 ) = 2t + 1. If  we  change  the  one  vertex  labeled  1  

adjacent  to  0   by  the  labeling  2,  then  it  would  not  affect  the  previous  edge  labeling , it  would  gives  the  

same  result. 

Case ( iii ) : n ≡ 2 ( mod3 ). Let  n  =  3t + 2. 

                  Now  the  cycle   C2n   has  6t + 4  vertices  and  6t  + 4 edges.  Here  C2n  consists  of   3t +2  vertices   

of   Cn     and   3t + 2   subdivisional   vertices.  Assign  the   label  0  to  t   vertices,  and  the  labels  1  and  2  to 

remaining each  of   the  t + 1 vertices  in  Cn and  orderly  we assign  the same  labeling  to 3t + 2  subdivisional  

vertices  such  that  0  to 1
st 

 t  subdivisional  vertices  s1,  s2, …, s t, and 1 and  2  to  remaining  s t + 1, s t +   2,…,s2t+1  

and  s 2 t + 2 , s 2 t + 3 , …..s 3 t + 2   respectively.  Then  we  get, vf  ( 0 ) = 2t, vf  ( 2 ) = 2 t + 2,  vf  ( 1 ) = 2 t + 2, and  

ef  ( 0 ) =2t+1,  ef  ( 1 )= 2t  +  1,  ef  ( 2 ) = 2t+2, now it    does    not  satisfy  vertex  labeling.  To   make   it    

into   cordial   labeling,  we  change  one  vertex  labeled  1 adjacent to  a  vertex  labeled  0, by  the  labeling  0  

and   one  vertex  labeled  2  adjacent  to  a  vertex  labeled  1 by  the  labeling 1,  then  we   get  vf  ( 0 ) = 2t + 1,  

vf  ( 1 ) = 2 t + 2,  vf  ( 2 ) = 2t  + 1.  In  this  subcase,  we get,  ef  ( 0 ) = 2t + 2, ef  ( 1 ) = 2t + 1, 

 ef  ( 2 ) =  2t + 1. 

                      In  all  cases,  we  see  that   | vf  ( i )  –  vf ( j )|  ≤  1  and    | ef ( i )  –  ef ( j )|  ≤  1  for  all 

  i,  j    {0, 1, 2},   f    is   a   geometric  mean   cordial    labeling   and   hence    the   subdivision of   a   graph    

S ( Cn )  is  a  geometric  mean  cordial  graph. 

Example 4.12.                                                                                                          

Geometric  mean  cordial  labeling  of  S ( C7 )  is  given  below.       0        2      2  

                          0        2      2                                                       0                               2              

                    0                            2                                         0                                                                        2 

                  0                                 2                                 0                                                          2                               

                0                                    1                             0                                                                                                 2 

                     0                                           1                                               0                                                                   2 

                        1       1          1                                      0                                                                                                     2                      

                                 C7                                                  0                                                                 1 

                                                                                       0                                                             1                                                        

                                                                                            1                                               1   1                                                                             

                                                                                              1     1                                 1 

                                                                                                             1       1        1 

                                                         

                                                                                                                        S ( C 7 )   C14 

Here  vf  ( 0 ) = 4,  vf  ( 1 ) = 6,  vf  ( 2 ) = 4  and  ef  ( 0 ) = 5, ef  ( 1 ) = 5, ef  ( 2 ) = 4. 

We  see  that  the above  labeling  is  not  geometric  mean  cordial  labeling. To  make   the  geometric 

  mean  cordiality, we   have  the  following  changes  of   label  as  follows. 
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0             2       2 

                                                                      0  0                                 2    2 

                                                                  0                                                                     2                          

                                                             0                                                    2     2 

                                                           0                                                             2           

                                                          0                                                             2  2                           

                                                          0                                                                1    2                 

                                                             0                                                               1    2 

                                                                 1                                                   1 

                                                                                     1                                                  1             1 

                                                                           1       1      1       1     1           

Here  vf  ( 0 ) = 4,  vf  ( 1 ) = 5,  vf  ( 2 ) = 5  and   ef  ( 0 ) = 5, ef  ( 1 ) = 4, ef  ( 2 ) = 5 

Example 4.13.  Geometric  mean  cordial  labeling  of  S ( C5 )  is  given  below.  

                                                                                                               0         2        2 

                                               0          2                                          0                                      2                          

                                  0                            2                               0                                                                                2 

                                 0                                                         0          0                                              2    

                                                                     2                      0                                                          2 

                                 1                              2                          1                                                         2                    

                                           1           1                                       1                                                  2        

                                                                                                    1                                        1 

                                                                                                                                                       1                 1               1 

C5                                                                                           S ( C 5 )   C10        

Here  in  S ( C 5 ) = C10 ,   vf  ( 0 ) =2 ,  vf  ( 1 ) = 4,  vf  ( 2 ) =  4  and ef  ( 0 ) = 3, ef  ( 1 ) = 3, ef  ( 2 ) = 4. 

We  see  that  the above  labeling  is  not  geometric  mean  cordial  labeling. To  make   the  geometric 

  mean  cordiality, we   have  the  following  changes  of   label  as  follows. 

             0          2       2 

                                                                           0                                     2                          

                                                                     0                                                  2      

                                                                 0                         0       0                    2    

                                                                 0                             0                            2 

                                                         0      1                      0  1                             2    1               

                                                               0    1                                  0                             2    1 

                                                                       1                               1         1 

                                                                                                    1                1                      1         

Here  vf  ( 0 ) = 3,  vf  ( 1 ) = 4,  vf  ( 2 )  = 3  and  ef  ( 0 ) = 4, ef  ( 1 ) = 3, ef  ( 2 ) = 3. 
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Theorem 4.14. Sm ( C n )  is  geometric  mean  cordial   iff   n ≡ 1,2 ( mod3 ) 

Proof.  We  know  that  Sm( Cn )  is  the graph  of  2
m
 . n   vertices   and  2

m
. n  edges.  

Case ( i ) :  n ≡ 0 ( mod3 ). Let  n  =  3t.   Let   t  ≥  1. 

Now  the  graph  consists  of  2
m
 . 3t   vertices   and  2

m
. 3t  edges.  If  f   admits  a  geometric  

mean  cordial   labeling, then   it  should   be    

vf  ( 0 ) =   vf  ( 1 ) =   vf  ( 2 ) =  2
m
. t   and     

ef  ( 0 ) =   2
m
 . t,   ef  ( 1 ) =  2

m
 . t,   ef  ( 2 ) = 2

m
 . t.   When   we  assign   0

s
  to  2

m
. t   vertices,   

we  get ef  ( 0 ) > 2
m
 t.  Hence   f    is   not   geometric   mean   cordial   labeling. 

Case ( ii ) :  n ≡ 1 ( mod3 ). Let  n  =  3t+1.  Let  t  ≥ 1. 

Now  the  graph  Sm( Cn ) consists  of  2
m
 . ( 3t + 1 )  vertices   and 2

m
. ( 3t+1 )  edges. In  this 

case,  Sm( C3t + 1 )   C2
m
. ( 3t +1 )  is a cycle that is  geometric  mean cordial. 

 

Case ( iii ) :  n ≡ 2 ( mod3 ). Let  n  =  3t+2.  Let  m  ≥ 1. 

Now  the  graph  consists  of  2
m
 . ( 3t + 2 )   vertices   and  2

m
. ( 3t+ 2 )  edges.  In  this  

case,  Sm( C3t + 2 )   C2
m
. ( 3t +2 )  is a cycle that is  geometric  mean cordial. 

  In  all  cases,  we  see  that  | vf ( i )  –  vf ( j ) |  ≤  1  and    | ef ( i ) –  ef ( j )|  ≤  1  for  all  i,  j    {0, 1, 

2},    f    is  a  geometric  mean  cordial  labeling  and  hence  the  m -  subdivision  of  a   graph  Sm( Cn )   is  a  

geometric  mean  cordial  graph. 

 

Example 4. 15 

 Geometric  mean  cordial  labeling  of  S2 ( C4 )  is  given  below                     

                                                      2                                                   0        0          2                                                           

                                           0                    2                                  0                                    2                

                                      0                           1                       0                                                   2          

                                           0                    1                          0                                                                                

                                                    1                                                                                           2       

                                                                                            1                                                     2 

                                                 C4                                                                     1                                                              2      

                                                                                                         1             1           1        

                                                                          

                                                                                                        S1 ( C 4 )   C8 
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                                                                      0      0      0        2       2 

                                                               0                                             2    2                                           

                                                          0                                 0   0                   2                                 

                                                      0                                       0                         2                                         

                                                    0                                      0                               2                                              

                                                 0                                           0                             2                               

                                                    0                                        0                               2                        

                                                    0                                                                  1                                   2     2                             

                                                       0                                          1  1                  1                

                                                          1                                              1           1 

                                                           1     1                                             1 

                                                                     1       1         1            1     1      

                                                                                   S2 ( C 4 )   C16 

 

Here  in  S2 ( C 4),   vf  ( 0 ) =5 ,  vf  ( 1 ) = 6,  vf  ( 2 ) =  5  and 

                                                                ef  ( 0 ) = 6,    ef  ( 1 ) = 5,    ef  ( 2 ) = 5. 
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