GEOMETRIC MEAN CORDIAL LABELING OF m - SUBDIVISION OF GRAPHS

NAGARAJAN.K ${ }^{\mathbf{1}}$ AND CHITRA LAKSHMI.K ${ }^{\mathbf{2}}$
${ }^{1}$ Department of Mathematics, Kalasalingam University, Krishnankoil
${ }^{2}$ Department of Mathematics, V. V. Vanniaperumal College for Women, Virudhunagar Tamil Nadu, INDIA.

Abstract

In this paper, we introduce the a concept of Geometric Mean Cordial Labeling of m - Subdivision of Graphs which is a kind of cordial labeling [2]. We construct m subdivision of graphs for standard graphs such as path and cycle and expand path and cycle by applying the operation subdivision [2.2]. Also we check whether the m-subdivision of graphs are geometric mean cordial graphs or not.

Keywords: Geometric mean cordial labeling, geometric mean cordial graph, path, cycle, subdivision, subdivisional vertices.

AMS 2010

1. INTRODUCTION

Today, Graph labeling [3] especially cordial labeling [2] plays an important role in the study of Graph Theory [1] in Mathematics. Many problems in network communication [1] use this cordial labeling for data organization, computational devices and for the flow of computation. Cordial labeling [2] was first introduced by Cahit in the year 1987. Using the concept of geometric mean cordial labeling, we investigate whether m - subdivision of graphs admit geometric mean cordial labeling or not. The m - subdivision of graphs give a long expansion and growth to the connected graphs [4] such as path, cycle etc.

2. m-Subdivision of Graphs

Definition 2.1. [4, 6] A subdivision of an edge e of a graph G is the subdivision of edge by introducing new vertices.

Definition 2.2.[1] A subdivision of a graph G denoted by $S(G)$ (known as sometimes expansion) is a graph resulting from the subdivision of edges in G. The subdivision of some edge with the end points u and v yields a graph containing one new vertex w, and with the edge set replacing e by two edges $u w$ and $w v$.

Definition 2.3. The operation $\boldsymbol{S}_{\boldsymbol{m}}(\boldsymbol{G})$ of a graph G is a graph G resulting from the subdivision of edges by m vertices in G.

For $m=1, S_{1}(G)=S(G)$ where $S(G)$ denotes subdivision of G.
For $m \geq 2, S_{m}(G)=S\left(S_{m-l}(G)\right)$.

Definition 2.4. [6] Let $G=(V, E)$ be a graph and f be a mapping from $V(G) \rightarrow\{0,1,2\}$. For each edge $u v$, assign the label $\Gamma_{\sqrt{f(u) f(v)}} 1, f$ is called a geometric mean cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$, where $v_{f}(x)$ and $e_{f}(x)$ denote the number of vertices and edges labeled with $x, x \in\{0,1,2\}$ respectively. A graph with a geometric mean cordial labeling is called geometric mean cordial graph.

Result 2.5. The subdivision of the graph P_{n} is $S\left(P_{n}\right) \cong P_{2 n-1}$ where $P_{2 n-1}$ is a path of $2 n-1$ vertices and $2 n-2$ edges.

Result 2.6. The subdivision of the graph C_{n} is $S\left(C_{n}\right) \cong C_{2 n}$ where $C_{2 n}$ is a cycle of $2 n$ vertices and $2 n$ edges.

3. m - subdivision of standard graphs.

Path.
From the Result 2.5, it follows that $S\left(P_{n}\right) \cong P_{2 n-1}$ where $P_{2 n-1}$ is a path of $2 n-1$ vertices and $2 n-2$ edges.

$$
\begin{aligned}
\operatorname{Now} S_{1}\left(P_{m+1}\right) & =S\left(P_{m+1}\right)=P_{2(m+1)-1}=P_{2 m+1} \\
S_{2}\left(P_{m+1}\right) & =S\left(S_{1}\left(P_{m+1}\right)\right)=S\left(P_{2 m+1}\right)=P_{2(2 m+1)-1}=P_{4 m+1} \\
S_{3}\left(P_{m+1}\right) & =S\left(S_{2}\left(P_{m+1}\right)\right)=S\left(P_{4 m+1}\right)=P_{2(4 m+1)-1}=P_{8 m+1}
\end{aligned}
$$

In general, we have
$S_{m}\left(P_{m+1}\right)=S\left(S_{m-1}\left(P_{m+1}\right)\right)=S\left(P_{\left(2^{m-1} \cdot m\right)+1}\right)=P_{2\left(2^{m-1} \cdot m+1\right)-1=} P_{\left(2^{m} \cdot m\right)+1}$
Then $S_{m}\left(P_{m+1}\right)$ is a path of $\left(2^{m} \cdot m\right)+1$ vertices and $2^{m} \cdot m$ edges.

Cycle.

From the Result 2.6, it follows that $S\left(C_{n}\right)=C_{2 n}$ where $C_{2 n}$ is a cycle of $2 n$ vertices and $2 n$ edges.

$$
\text { Now } \begin{aligned}
& S_{l}\left(C_{n}\right)=S\left(C_{n}\right)=C_{2 n} \\
& S_{2}\left(C_{n}\right)=S\left(S_{1}\left(C_{n}\right)\right)=S\left(C_{2 n}\right)=C_{4 n} \\
& S_{3}\left(C_{n}\right)=S\left(S_{2}\left(C_{n}\right)\right)=S\left(C_{4 n}\right)=C_{8 n} \\
& S_{m-1}\left(C_{n}\right)=S\left(S_{m-2}\left(C_{n}\right)\right)=S\left(C_{2}^{m-2} \cdot n\right)=C_{2 \cdot 2}^{m-2} \cdot n=C_{2}^{m-1} \cdot n
\end{aligned}
$$

In general, we have, $S_{m}\left(C_{n}\right)=C_{2}{ }^{m} . n$
Then $S_{m}\left(C_{n}\right)$ is a cycle of $2^{m} \cdot n$ vertices and $2^{m} \cdot{ }_{n}$ edges.

4. Geometric mean cordial labeling of \boldsymbol{m}-subdivision of graphs.

The following results will be used to find geometric mean cordial labeling of m - subdivision of graphs.

Theorem 4.1. [5] The path P_{n} is geometric mean cordial.
Theorem 4.2.[5] The cycle C_{n} is geometric mean cordial when $n \equiv 1,2(\bmod 3)$.

Theorem 4.3. $S\left(P_{n}\right)$ is geometric mean cordial.
Proof: Let $P_{n}: u_{1}, u_{2}, \ldots, u_{n}$ be the path of n vertices and $n-1$ edges. We subdivide the $n-1$ edges of P_{n}. Now we get $n-1$ subdivisional vertices. Let $s_{1}, s_{2}, \ldots, s_{n-1}$ be the subdivisional vertices of P_{n}. From the Result 2.5, it follows that $S\left(P_{n}\right) \cong P_{2 n-1}$ where $P_{2 n-1}$ is a path of $2 n-1$ vertices and $2 n-2$ edges. From the Theorem 4.1[5], it follows that $S\left(P_{1}\right) \cong P_{1}$ and $S\left(P_{2}\right) \cong P_{3}$ which are geometric mean cordial. This Theorem is dealt according to 3 cases by using congruence modulo n.

Case $(\mathbf{i}): n \equiv 0(\bmod 3)$. Let $n=3 t, t \geq 1$
Now the path $P_{2 n-1}$ has $\sigma t-1$ vertices and $\sigma t-2$ edges. Let $V\left(P_{2 n-1}\right)=V_{1} \cup V_{2}$ where $V_{l}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V_{2}=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

Define the function $f: V_{l} \rightarrow\{0,1,2\}$ for $3 t$ vertices of P_{n} by

$$
\begin{array}{ll}
f\left(u_{i}\right) & =2, \quad 1 \leq i \leq t \\
f\left(u_{i+t}\right) & =1, \quad 1 \leq i \leq t, \\
f\left(u_{i+2 t}\right) & =0, \quad 1 \leq i \leq t .
\end{array}
$$

Consider vertices of V_{2} If $t=1$, then there exists 2 sub divisional vertices. The possible labeling of these two sub divisional vertices namely s_{1} and s_{2} are 1 and 0 , or 1 and 2 or 2 and 1. In these three combinations, we get geometric mean cordial.

If $t>1,3 t-1$ subdivisional vertices are labeled according to the following function.

$$
\begin{array}{ll}
f\left(s_{i}\right) \quad & =2, \quad 1 \leq i \leq t-1 \\
& =1, \quad t \leq i \leq 2 t-1 \\
& =0, \quad 2 t \leq i \leq 3 t-1 .
\end{array}
$$

Then $v_{f}(0)=2 t, \quad v_{f}(1)=2 t, \quad v_{f}(2)=2 t-1$,
$e_{f}(0)=2 t, \quad e_{f}(1)=2 t-1, e_{f}(2)=2 t-1$.
Case (ii) : $n \equiv 1(\bmod 3)$. Let $n=3 t+1, t \geq 1$
Now the path $P_{2 n-1}$ has $6 t+1$ vertices and $6 t$ edges. Let $V\left(P_{2 n-1}\right)=V_{l} \cup V_{2}$
where $V_{l}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V_{2}=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$
Define the function $f: V_{l} \rightarrow\{0,1,2\}$ for $3 t+1$ vertices of P_{n} by

$$
\begin{array}{ll}
f\left(u_{i}\right) & =2, \\
f\left(u_{i+t}\right) & 1 \leq i \leq t, \\
f\left(u_{l+i+2 t}\right)= & 1 \leq i \leq t+1, \\
1 \leq i \leq t .
\end{array}
$$

Consider vertices of V_{2}

$$
\begin{aligned}
& f\left(s_{i}\right) \quad=2, \quad 1 \leq i \leq t, \\
& =1, \quad t+1 \leq i \leq 2 t \text {, } \\
& =0, \quad 2 t+1 \leq i \leq 3 t .
\end{aligned}
$$

Then $v_{f}(0)=2 t, v_{f}(1)=2 t+1, v_{f}(2)=2 t$,

$$
e_{f}(0)=2 t, e_{f}(1)=2 t, \quad e_{f}(2)=2 t .
$$

Case (iii): $n \equiv 2(\bmod 3)$. Let $n=3 t+2$.
Now the path $P_{2 n-1}$ has $6 t+3$ vertices and $6 t+2$ edges. Let $V\left(P_{2 n-1}\right)=V_{1} \cup V_{2}$ where $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V_{2}=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

Define the function $f: V_{I} \rightarrow\{0,1,2\}$ for $3 t+2$ vertices of P_{n} by

$$
\begin{array}{lll}
f\left(u_{i}\right) & =2, & 1 \leq i \leq t, \\
f\left(u_{i+t}\right) & =1, & 1 \leq i \leq t+1, \\
f\left(u_{l+i+2 t}\right) & =0, & 1 \leq i \leq t+1 .
\end{array}
$$

Consider vertices of V_{2}

$$
\begin{aligned}
f\left(s_{i}\right) \quad & =2, \quad 1 \leq i \leq t \\
& =1, \quad t+1 \leq i \leq 2 t \\
& =0, \quad 2 t+1 \leq i \leq 3 t+1
\end{aligned}
$$

Then $v_{f}(0)=2 t+2, \quad v_{f}(1)=2 t+1, \quad v_{f}(2)=2 t$,

$$
e_{f}(0)=2 t+2, \quad e_{f}(1)=2 t, \quad e_{f}(2)=2 t .
$$

The labeling defined does not satisfy the vertex and edge condition. To make it into a geometric mean cordial labeling, we change the vertex labeled 0 which is adjacent to l by the labeling 2 . We get $v_{f}(0)=2 t+1, v_{f}(1)=2 t+1, v_{f}(2)=2 t+1$.

In this case, we get $e_{f}(0)=2 t+1 \quad e_{f}(1)=2 t, e_{f}(2)=2 t+1$.

Now it satisfies both the vertex and edge condition.
In all the three cases, we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1,2\}, f$ is a geometric mean cordial labeling and hence the subdivision of a graph $S\left(P_{n}\right)$ is geometric mean cordial.

Example 4.4. Geometric mean cordial labeling of $S\left(P_{6}\right)$ is given below.

$\begin{array}{llllllllll}2 & 2 & 2 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ & & \mathbf{0} \\ S\left(P_{6}\right) & \cong & P_{11} & & & & \end{array}$
Here, in $S\left(P_{6}\right), v_{f}(0)=4, v_{f}(1)=4, v_{f}(2)=3$ and $e_{f}(0)=4, e_{f}(1)=3, e_{f}(2)=3$.
Example 4.5. Geometric mean cordial labeling of $S\left(P_{7}\right)$ is given below.

$\begin{array}{lllllll}2 & 2 & 1 & 1 & 1 & 0 & 0\end{array}$
P_{7}

$$
S\left(P_{7}\right) \cong P_{13}
$$

Here, in $S\left(P_{7}\right), v_{f}(0)=4, v_{f}(1)=5, v_{f}(2)=4$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=4 .$.
Example 4.6. Geometric mean cordial labeling of $S\left(P_{8}\right)$ is given below.

$\begin{array}{llllllll}2 & 2 & 1 & 1 & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ P_{8} & & \end{array}$

$\begin{array}{lllllllllllllll}2 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $S\left(P_{8}\right) \cong P_{15}$

Here, in $S\left(P_{8}\right), v_{f}(0)=6, v_{f}(1)=5, v_{f}(2)=4$ and $e_{f}(0)=6, e_{f}(1)=4, e_{f}(2)=4$.
We see that the above labeling is not geometric mean cordial labeling. To make the geometric mean cordiality, we change the label as follows.

Now $v_{f}(0)=5, v_{f}(1)=5, v_{f}(2)=5$ and $e_{f}(0)=5, e_{f}(1)=4, e_{f}(2)=5$.

Theorem 4.7. $S_{m}\left(P_{m+1}\right)$ is geometric mean cordial.
Proof. We know that $S_{m}\left(P_{m+1}\right)$ is a graph of $2^{m} \cdot m+1$ vertices and 2^{m}. m edges. The theorem is easily verified for $m=0,1,2$. If $m=0$, we get a graph P_{1} and is of 1 vertex and no edge. Now the graph has no subdivision. If $m=1$, we get subdivision
of a graph $S_{1}\left(P_{2}\right)=S\left(P_{2}\right) \cong P_{3}$, From the Theorem 4.1 [5], it follows P_{3} is geometric mean cordial, $S_{l}\left(P_{2}\right)$ is geometric mean cordial. If $m=2$, we get a subdivision of a graph $S_{2}\left(P_{3}\right)=S\left(S_{1}\left(P_{3}\right)\right)=S\left(P_{3}\right) \cong P_{5}$. From the Theorem 4.1 [5], it follows P_{5} is geometric mean cordial, $S_{2}\left(P_{3}\right)$ is geometric mean cordial and hence $S\left(P_{n}\right)$ is geometric mean cordial.
Case $(\mathbf{i}): m \equiv 0(\bmod 3)$. Let $m=3 t, t \geq 1$.
Now the path has $\left(2^{3 t} \cdot 3 t\right)+1$ vertices and $2^{3 t} .3 t$ edges. The labeling is as follows. If we assign $0^{\text {s }}$ to $2^{3 t} . t$ vertices, $1^{\text {ss }}$ to $2^{3 t} \cdot t+1$ vertices and 2^{s} to $2^{3 t} \cdot t$ vertices, then

$$
\begin{aligned}
& v_{f}(0)=2^{3 t} \cdot t, v_{f}(1)=2^{3 t} \cdot t+1, v_{f}(2)=2^{3 t} \cdot t \text { and } \\
& e_{f}(0)=2^{3 t} \cdot t, e_{f}(1)=2^{3 t} \cdot t, \quad e_{f}(2)=2^{3 t} \cdot t,
\end{aligned}
$$

In this case, we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1,2\}$, f is a geometric mean cordial labeling and hence the m - subdivision of a graph $S_{m}\left(P_{m+1}\right)$ is a geometric mean cordial graph.

Case (ii) : $m \equiv 1(\bmod 3)$. Let $m=3 t+1$.
Now the path has $\left(2^{3 t+1} \cdot(3 t+1)\right)+1$ vertices and $2^{3 t+1} \cdot(3 t+1)$ edges. The labeling is as follows. There are two subcases.
Subcase (i): $v_{f}(0)=\frac{\left(2^{3 t+1}(3 t+1)\right)-1}{3}+1, v_{f}(1)=\frac{\left(2^{3 t+1}(3 t+1)\right)-1}{3}+1$,

$$
v_{f}(2)=\frac{\left(2^{3 t+1}(3 t+1)\right)-1}{3}, t=1,3,5, \ldots .
$$

In this subcase, we get $e_{f}(0)=\frac{\left(2^{3 t+1}(3 t+1)\right)-1}{3}+1, e_{f}(1)=\frac{\left(2^{3 t+1}(3 t+1)\right)-1}{3}$,

$$
e_{f}(2)=\frac{\left(2^{3 t+1}(3 t+1)\right)-1}{3} .
$$

Subcase (ii): $v_{f}(0)=\frac{\left(2^{3 t+1}(3 t+1)\right)-2}{3}+1, v_{f}(1)=\frac{\left(2^{3 t+1}(3 t+1)\right)-2}{3}+1$,

$$
v_{f}(2) \frac{\left(2^{3 t+1}(3 t+1)\right)-2}{3}+1, t=2,4,6, \ldots .
$$

In this subcase, we get $e_{f}(0)=\frac{\left(2^{3 t+1}(3 t+1)\right)-2}{3}+1, e_{f}(1)=\frac{\left(2^{3 t+1}(3 t+1)\right)-2}{3}$,

$$
e_{f}(2) \frac{\left(2^{3 t+1}(3 t+1)\right)-2}{3}+1 \text {. }
$$

In all the subcases, we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1,2\}, f$ is a geometric mean cordial labeling and hence the m-subdivision of a graph $S_{m}\left(P_{m+l}\right)$ is a geometric mean cordial graph.

Case (iii) : $m \equiv 2(\bmod 3)$. Let $m=3 t+2$.
Now the path has $\left(2^{3 t+2} \cdot 3 t+2\right)+1$ vertices and $2^{3 t+2} \cdot 3 t+2$ edges. The labeling is as follows. There are two subcases.
Subcase (i): $v_{f}(0)=\frac{\left(2^{3 t+2}(3 t+2)\right)-1}{3}+1, v_{f}(1)=\frac{\left(2^{3 t+2}(3 t+2)\right)-1}{3}+1$,

$$
v_{f}(2)=\frac{\left(2^{3 t+2}(3 t+2)\right)-1}{3} t=1,3,5, \ldots .
$$

In this subcase, we get $e_{f}(0)=\frac{\left(2^{3 t+2}(3 t+2)\right)-1}{3}+1, e_{f}(1)=\frac{\left(2^{3 t+2}(3 t+2)\right)-1}{3}$,

$$
e_{f}(2)=\frac{\left(2^{3 t+2}(3 t+2)\right)-1}{3} .
$$

Subcase (ii): $v_{f}(0)=\frac{\left(2^{3 t+2}(3 t+2)\right)-2}{3}+1, v_{f}(1)=\frac{\left(2^{3 t+2}(3 t+2)\right)-2}{3}+1$,

$$
v_{f}(2)=\frac{\left(2^{3 t+1}(3 t+2)\right)-2}{3}+1 \quad t=2,4,6, \ldots
$$

In this subcase, we get $e_{f}(0)=\frac{\left(2^{3 t+2}(3 t+2)\right)-2}{3}+1, e_{f}(1)=\frac{\left(2^{3 t+2}(3 t+2)\right)-2}{3}$,

$$
e_{f}(2)=\frac{\left(2^{3 t+2}(3 t+2)\right)-2}{3}+1
$$

Now we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1,2\}$, f is a geometric mean cordial labeling and hence the m - subdivision of a graph $S_{m}\left(P_{m+1}\right)$ is a geometric mean cordial graph.

Example 4.8. Geometric mean cordial labeling of $S_{3}\left(P_{4}\right)$ is given below.

$$
S_{3}\left(P_{4}\right) \cong P_{25}
$$

Here $v_{f}(0)=8, v_{f}(1)=9, v_{f}(2)=8$ and $e_{f}(0)=8, e_{f}(1)=8, e_{f}(2)=8$.

Example 4.9. Geometric mean cordial labeling of $S_{4}\left(P_{5}\right)$ is given below.

Here $v_{f}(0)=22, v_{f}(1)=22, v_{f}(2)=21$ and $e_{f}(0)=22, e_{f}(1)=21, e_{f}(2)=21$.

Example 4.10. Geometric mean cordial labeling of $S_{5}\left(P_{6}\right)$ is given below.

$$
S_{5}\left(P_{6}\right) \cong P_{161}
$$

Here $v_{f}(0)=54, v_{f}(1)=54, v_{f}(2)=53$ and $e_{f}(0)=54, e_{f}(1)=53, e_{f}(2)=53 .$.

Theorem 4.11. $S\left(C_{n}\right)$ is geometric mean cordial iff $n \equiv 1,2(\bmod 3)$
Proof. Let $C_{n}: u_{1} u_{2} \ldots u_{n}$ be the cycle of n vertices and n edges. Let $s_{1}, s_{2}, \ldots, s_{n}$ be the subdivisional vertices of C_{n}. From the Result 2.6, it follows that $S\left(C_{n}\right)$ is $C_{2 n}$ and has $2 n$ vertices and $2 n$ edges. This theorem is also dealt into 3 cases by using congruence modulo n.

Case (i): $n \equiv 0(\bmod 3)$. Let $n=3 t$.
Now the cycle $\mathrm{C}_{2 \mathrm{n}}$ has $6 t$ vertices and $6 t$ edges. Here $C_{2 n}$ consists of $3 t$ vertices of C_{n} and $3 t$ subdivisional vertices in order. If $S\left(C_{n}\right)$ admits a geometric mean cordial labeling f, then we should have $v_{f}(0)=v_{f}(1)=v_{f}(2)=2 t$ and $e_{f}(0)=e_{f}(1)=e_{f}(2)=2 t$ \qquad (1).

Consider $v_{f}(0)=2 t$. If we assign 0 's to $2 t$ number of vertices in $S\left(C_{n}\right)$, then we get $e_{f}(0)>2 t$, a contradiction to (1). Hence f is not a geometric mean cordial labeling.

Case (ii) : $n \equiv 1(\bmod 3)$. Let $n=3 t+1$.
Now the cycle $C_{2 n}$ has $6 t+2$ vertices and $6 t+2$ edges. Here $C_{2 n}$ consists of $3 t+1$ vertices of C_{n} and $3 t+l$ subdivisional vertices. Assign the label l to $t+l$ vertices, and the labels 0 and 2 to remaining each of the t vertices in C_{n} and orderly we assign the same labeling to $3 t+1$ subdivisional vertices such that 0 to $1^{s t} t$ subdivisional vertices $s_{1}, s_{2}, \ldots, s_{t}$, and 1 and 2 to remaining $s_{t+1}, s_{t+2}, \ldots, s_{2 t+1}$ and $s_{2 t+2}, s_{2 t+3}, \ldots . . s_{s_{t+1}}$ respectively.
Then we get, $v_{f}(0)=2 t$, $v_{f}(1)=2 t+2, v_{f}(2)=2 t, e_{f}(0)=2 t+1, e_{f}(1)=2 t+1, e_{f}(2)=2 t$, and now it does not satisfy vertex labeling. To make it into geometric mean cordial labeling, we change
the one vertex labeled 1 adjacent to 2 by the labeling 2 , then we get $v_{f}(0)=2 t, v_{f}(1)=2 t+1, v_{f}($ $2)=2 t+1$ and $e_{f}(0)=2 t+1, e_{f}(1)=2 t, e_{f}(2)=2 t+1$. If we change the one vertex labeled 1 adjacent to 0 by the labeling 2, then it would not affect the previous edge labeling, it would gives the same result.
Case (iii) : $n \equiv 2(\bmod 3)$. Let $n=3 t+2$.
Now the cycle $C_{2 n}$ has $6 t+4$ vertices and $6 t+4$ edges. Here $C_{2 n}$ consists of $3 t+2$ vertices of C_{n} and $3 t+2$ subdivisional vertices. Assign the label 0 to t vertices, and the labels 1 and 2 to remaining each of the $t+l$ vertices in C_{n} and orderly we assign the same labeling to $3 t+2$ subdivisional vertices such that 0 to $l^{s t} t$ subdivisional vertices $s_{l,}, s_{2}, \ldots, s_{t}$ and l and 2 to remaining $s_{t+1,} s_{t+2}, \ldots, s_{2 t+1}$ and $s_{2 t+2}, s_{2 t+3}, \ldots \ldots s_{3 t+2}$ respectively. Then we get, $v_{f}(0)=2 t, v_{f}(2)=2 t+2, v_{f}(1)=2 t+2$, and $e_{f}(0)=2 t+l, e_{f}(1)=2 t+l, e_{f}(2)=2 t+2$, now it does not satisfy vertex labeling. To make it into cordial labeling, we change one vertex labeled 1 adjacent to a vertex labeled 0 , by the labeling 0 and one vertex labeled 2 adjacent to a vertex labeled l by the labeling 1 , then we get $v_{f}(0)=2 t+1$, $v_{f}(1)=2 t+2, v_{f}(2)=2 t+1$. In this subcase, we get, $e_{f}(0)=2 t+2, e_{f}(1)=2 t+1$, $e_{f}(2)=2 t+1$.

In all cases, we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|\mathrm{e}_{\mathrm{f}}(\mathrm{i})-\mathrm{e}_{\mathrm{f}}(\mathrm{j})\right| \leq 1$ for all $i, j \in\{0,1,2\}, f$ is a geometric mean cordial labeling and hence the subdivision of a graph $S\left(C_{n}\right)$ is a geometric mean cordial graph.

Example 4.12.

Geometric mean cordial labeling of $S\left(C_{7}\right)$ is given below. $\begin{array}{llll}\mathbf{0} & \mathbf{2} & 2\end{array}$

$$
S\left(C_{7}\right) \cong C_{14}
$$

Here $v_{f}(0)=4, v_{f}(1)=6, v_{f}(2)=4$ and $e_{f}(0)=5, e_{f}(1)=5, e_{f}(2)=4$.
We see that the above labeling is not geometric mean cordial labeling. To make the geometric mean cordiality, we have the following changes of label as follows.

Here $v_{f}(0)=4, v_{f}(1)=5, v_{f}(2)=5$ and $e_{f}(0)=5, e_{f}(1)=4, e_{f}(2)=5$
Example 4.13. Geometric mean cordial labeling of $S\left(C_{5}\right)$ is given below.

C_{5}

Here in $S\left(C_{5}\right)=C_{10}, v_{f}(0)=2, v_{f}(1)=4, v_{f}(2)=4$ and $e_{f}(0)=3, e_{f}(1)=3, e_{f}(2)=4$.
We see that the above labeling is not geometric mean cordial labeling. To make the geometric mean cordiality, we have the following changes of label as follows.

Here $v_{f}(0)=3, v_{f}(1)=4, v_{f}(2)=3$ and $e_{f}(0)=4, e_{f}(1)=3, e_{f}(2)=3$.

Theorem 4.14. $S_{m}\left(C_{n}\right)$ is geometric mean cordial iff $n \equiv 1,2(\bmod 3)$
Proof. We know that $S_{m}\left(C_{n}\right)$ is the graph of $2^{m} . n$ vertices and $2^{m} . n$ edges.
Case (i): $n \equiv 0(\bmod 3)$. Let $n=3 t$. Let $t \geq 1$.
Now the graph consists of 2^{m}. $3 t$ vertices and 2^{m}. $3 t$ edges. If f admits a geometric mean cordial labeling, then it should be
$v_{f}(0)=v_{f}(1)=v_{f}(2)=2^{m} . t$ and
$e_{f}(0)=2^{m} \cdot t, \quad e_{f}(1)=2^{m} \cdot t, \quad e_{f}(2)=2^{m} . t$. When we assign O^{s} to $2^{m} . t$ vertices, we get $e_{f}(0)>2^{m} t$. Hence f is not geometric mean cordial labeling.
Case (ii) : $n \equiv 1(\bmod 3)$. Let $n=3 t+1$. Let $t \geq 1$.
Now the graph $S_{m}\left(C_{n}\right)$ consists of $2^{m} .(3 t+1)$ vertices and $2^{m} .(3 t+1)$ edges. In this case, $S_{m}\left(C_{3 t+1}\right) \cong C_{2}^{m} .(3 t+1)$ is a cycle that is geometric mean cordial.

Case (iii) : $n \equiv 2(\bmod 3)$. Let $n=3 t+2$. Let $m \geq 1$.
Now the graph consists of $2^{m} .(3 t+2)$ vertices and $2^{m} .(3 t+2)$ edges. In this case, $S_{m}\left(C_{3 t+2}\right) \cong C_{2}^{m} .(3 t+2)$ is a cycle that is geometric mean cordial.

In all cases, we see that $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0, l$, $2\}, f$ is a geometric mean cordial labeling and hence the m - subdivision of a graph $S_{m}\left(C_{n}\right)$ is a geometric mean cordial graph.

Example 4. 15

Geometric mean cordial labeling of $S_{2}\left(C_{4}\right)$ is given below

C4

$$
S_{I}\left(C_{4}\right) \cong C_{8}
$$

$$
\begin{aligned}
& \text { Here in } S_{2}\left(C_{4}\right), v_{f}(0)=5, v_{f}(1)=6, v_{f}(2)=5 \text { and } \\
& e_{f}(0)=6, \quad e_{f}(1)=5, \quad e_{f}(2)=5 .
\end{aligned}
$$

REFERENCES

1. Bondy JA and Murthy USR (1976). Graph Theory with Application Newyork, North Holland.
2. Cahit I (1987). Cordial Graphs, A weaker version of graceful and harmonious Graphs, Ars. Combinatoria, vol 23, No 3, pp. 201-207.
3. Gallian JA (2011). A Dynamic Survey of Graph Labeling, vol 18, pp. 1-219.
4. Harary F (1969). Graph Theory, Addison Wesley, New Delhi.
5. Chitra Lakshmi K and Nagarajan K (2017). Geometric Mean Cordial Labeling of graphs, International Journal of Mathematics and Soft Computing, vol 7, No 1, pp. 75-87.
6. Chitra Lakshmi K and Nagarajan K (2017). Geometric Mean Cordial Labeling of Subdivision of Standard Graphs, International Journal of Pure and Applied Mathematics, pp. 103-112.
