

International Multidisciplinary Innovative Research Journal An International refereed e-journal - Science Issue

> ISSN: 2456 - 4613 Volume - II (2) May 2018

GEOMETRIC MEAN CORDIAL LABELING OF m – SUBDIVISION OF GRAPHS

NAGARAJAN.K¹ AND CHITRA LAKSHMI.K² ¹Department of Mathematics, Kalasalingam University, Krishnankoil ² Department of Mathematics, V. V. Vanniaperumal College for Women, Virudhunagar Tamil Nadu, INDIA.

ABSTRACT

In this paper, we introduce the a concept of *Geometric Mean Cordial Labeling of* m – *Subdivision of Graphs* which is a kind of cordial labeling [2]. We construct m – subdivision of graphs for standard graphs such as path and cycle and expand path and cycle by applying the operation subdivision [2.2]. Also we check whether the *m*-subdivision of graphs are geometric mean cordial graphs or not.

Keywords: Geometric mean cordial labeling, geometric mean cordial graph, path, cycle, subdivision, subdivisional vertices.

AMS 2010

1. INTRODUCTION

Today, Graph labeling [3] especially cordial labeling [2] plays an important role in the study of Graph Theory [1] in Mathematics. Many problems in network communication [1] use this cordial labeling for data organization, computational devices and for the flow of computation. Cordial labeling [2] was first introduced by Cahit in the year 1987. Using the concept of geometric mean cordial labeling, we investigate whether m – subdivision of graphs admit geometric mean cordial labeling or not. The m – subdivision of graphs give a long expansion and growth to the connected graphs [4] such as path, cycle etc.

2. *m* – Subdivision of Graphs

Definition 2.1. [4, 6] A subdivision of an edge e of a graph G is the subdivision of edge by introducing new vertices.

Definition 2.2. [1] A subdivision of a graph G denoted by S(G) (known as sometimes expansion) is a graph resulting from the subdivision of edges in G. The subdivision of some edge with the end points u and v yields a graph containing one new vertex w, and with the edge set replacing e by two edges uw and wv.

Definition 2.3. The operation $S_m(G)$ of a graph G is a graph G resulting from the subdivision of edges by m vertices in G.

For m = 1, $S_1(G) = S(G)$ where S(G) denotes subdivision of G. For $m \ge 2$, $S_m(G) = S(S_{m-1}(G))$.

Definition 2.4. [6] Let G = (V, E) be a graph and f be a mapping from $V(G) \rightarrow \{0, 1, 2\}$. For each edge uv, assign the label $\Gamma_{\sqrt{f(u)f(v)}} 1$, f is called a **geometric mean cordial labeling** if $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$, where $v_f(x)$ and $e_f(x)$ denote the number of vertices and edges labeled with $x, x \in \{0, 1, 2\}$ respectively. A graph with a geometric mean cordial labeling is called **geometric mean cordial graph**.

Result 2.5. The subdivision of the graph P_n is $S(P_n) \cong P_{2n-1}$ where P_{2n-1} is a path of 2n-1 vertices and 2n-2 edges.

Result 2.6. The subdivision of the graph C_n is $S(C_n) \cong C_{2n}$ where C_{2n} is a cycle of 2n vertices and 2n edges.

3. *m* - subdivision of standard graphs.

Path.

From the Result 2.5, it follows that $S(P_n) \cong P_{2n-1}$ where P_{2n-1} is a path of 2n-1 vertices and 2n-2 edges.

Now
$$S_1(P_{m+1}) = S(P_{m+1}) = P_{2(m+1)-1} = P_{2m+1}$$

 $S_2(P_{m+1}) = S(S_1(P_{m+1})) = S(P_{2m+1}) = P_{2(2m+1)-1} = P_{4m+1}$
 $S_3(P_{m+1}) = S(S_2(P_{m+1})) = S(P_{4m+1}) = P_{2(4m+1)-1} = P_{8m+1}$

In general, we have

 $S_{m}(P_{m+1}) = S(S_{m-1}(P_{m+1})) = S(P_{(2}^{m-1} \cdot m_{)+1}) = P_{2(2}^{m-1} \cdot m_{+1}) - 1 = P_{(2}^{m} \cdot m_{)+1}$ Then $S_{m}(P_{m+1})$ is a path of $(2^{m} \cdot m_{)+1}$ vertices and $2^{m} \cdot m_{-1}$ edges.

Cycle.

From the Result 2.6, it follows that $S(C_n) = C_{2n}$ where C_{2n} is a cycle of 2n vertices and 2n edges.

Now
$$S_1(C_n) = S(C_n) = C_{2n}$$

 $S_2(C_n) = S(S_1(C_n)) = S(C_{2n}) = C_{4n}$
 $S_3(C_n) = S(S_2(C_n)) = S(C_{4n}) = C_{8n}$
 $S_{m-1}(C_n) = S(S_{m-2}(C_n)) = S(C_2^{m-2}, n) = C_{22}^{m-2}, n = C_2^{m-1}, n$

In general, we have, $S_m(C_n) = C_2^m n$

Then $S_m(C_n)$ is a cycle of $2^m \cdot n$ vertices and $2^m \cdot n$ edges.

4. Geometric mean cordial labeling of m – subdivision of graphs.

The following results will be used to find geometric mean cordial labeling of m-subdivision of graphs.

Theorem 4.1. [5] The path P_n is geometric mean cordial.

Theorem 4.2. [5] The cycle C_n is geometric mean cordial when $n \equiv 1, 2 \pmod{3}$.

Theorem 4.3. $S(P_n)$ is geometric mean cordial.

Proof: Let $P_n : u_1, u_2, ..., u_n$ be the path of n vertices and n-1 edges. We subdivide the n-1 edges of P_n . Now we get n-1 subdivisional vertices. Let $s_1, s_2, ..., s_{n-1}$ be the subdivisional vertices of P_n . From the Result 2.5, it follows that $S(P_n) \cong P_{2n-1}$ where P_{2n-1} is a path of 2n-1 vertices and 2n-2 edges. From the Theorem 4.1 [5], it follows that $S(P_1) \cong P_1$ and $S(P_2) \cong P_3$ which are geometric mean cordial. This Theorem is dealt according to 3 cases by using congruence modulo n.

Case (i): $n \equiv 0 \pmod{3}$. Let $n = 3t, t \geq 1$

Now the path P_{2n-1} has 6t - 1 vertices and 6t - 2 edges. Let $V(P_{2n-1}) = V_1 \cup V_2$ where $V_1 = \{ u_1, u_2, ..., u_n \}$ and $V_2 = \{ s_1, s_2, ..., s_{n-1} \}$

Define the function $f: V_1 \rightarrow \{0, 1, 2\}$ for 3t vertices of P_n by

$$f(u_i) = 2, \ 1 \le i \le t,$$

$$f(u_{i+t}) = 1, \ 1 \le i \le t,$$

$$f(u_{i+2t}) = 0, \ 1 \le i \le t.$$

Consider vertices of V_2 If t = 1, then there exists 2 sub-divisional vertices. The possible labeling of these two sub-divisional vertices namely s_1 and s_2 are 1 and 0, or 1 and 2 or 2 and 1. In these three combinations, we get geometric mean cordial.

If t > 1, 3t - 1 subdivisional vertices are labeled according to the following function.

$$f(s_i) = 2, \quad 1 \le i \le t - 1,$$

= 1, $t \le i \le 2t - 1,$
= 0, $2t \le i \le 3t - 1.$
Then $v_f(0) = 2t, \quad v_f(1) = 2t, \quad v_f(2) = 2t - 1,$
 $e_f(0) = 2t, \quad e_f(1) = 2t - 1, \quad e_f(2) = 2t - 1.$
Case (ii): $n \equiv 1 \pmod{3}$. Let $n = 3t + 1, t \ge 1$

Now the path P_{2n-1} has 6t + 1 vertices and 6t edges. Let $V(P_{2n-1}) = V_1 \cup V_2$ where $V_1 = \{ u_1, u_2, ..., u_n \}$ and $V_2 = \{ s_1, s_2, ..., s_{n-1} \}$

Define the function $f: V_1 \rightarrow \{0, 1, 2\}$ for 3t + 1 vertices of P_n by

$$f(u_i) = 2, \quad 1 \le i \le t,$$

$$f(u_{i+t}) = 1, \quad 1 \le i \le t+1,$$

$$f(u_{1+i+2t}) = 0, \quad 1 \le i \le t.$$

Consider vertices of V_2

$$f(s_i) = 2, \quad 1 \le i \le t,$$

= 1, $t+1 \le i \le 2t,$
= 0, $2t+1 \le i \le 3t.$

Then $v_f(0) = 2t$, $v_f(1) = 2t + 1$, $v_f(2) = 2t$,

$$e_f(0) = 2t$$
, $e_f(1) = 2t$, $e_f(2) = 2t$.

Case (iii): $n \equiv 2(mod3)$. Let n = 3t+2.

Now the path P_{2n-1} has 6t + 3 vertices and 6t + 2 edges. Let $V(P_{2n-1}) = V_1 \cup V_2$ where $V_1 = \{ u_1, u_2, ..., u_n \}$ and $V_2 = \{ s_1, s_2, ..., s_{n-1} \}$

Define the function $f: V_1 \rightarrow \{0, 1, 2\}$ for 3t + 2 vertices of P_n by

$$f(u_i) = 2, \quad 1 \le i \le t,$$

$$f(u_{i+t}) = 1, \quad 1 \le i \le t+1,$$

$$f(u_{1+i+2t}) = 0, \quad 1 \le i \le t+1.$$

Consider vertices of V_2

$$f(s_i) = 2, \quad 1 \le i \le t,$$

= 1, $t+1 \le i \le 2t,$
= 0, $2t+1 \le i \le 3t+1.$
Then $v_f(0) = 2t+2, \quad v_f(1) = 2t+1, \quad v_f(2) = 2t,$
 $e_f(0) = 2t+2, \quad e_f(1) = 2t, \qquad e_f(2) = 2t.$

The labeling defined does not satisfy the vertex and edge condition. To make it into a geometric mean cordial labeling, we change the vertex labeled 0 which is adjacent to 1 by the labeling 2. We get $v_f(0) = 2t + 1$, $v_f(1) = 2t + 1$, $v_f(2) = 2t + 1$.

In this case, we get $e_f(0) = 2t + 1$ $e_f(1) = 2t$, $e_f(2) = 2t + 1$.

Now it satisfies both the vertex and edge condition.

In all the three cases, we see that $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for all $i, j \in \{0, 1, 2\}, f$ is a geometric mean cordial labeling and hence the subdivision of a graph $S(P_n)$ is geometric mean cordial.

Example 4.4. Geometric mean cordial labeling of $S(P_6)$ is given below.

Here, in $S(P_6)$, $v_f(0) = 4$, $v_f(1) = 4$, $v_f(2) = 3$ and $e_f(0) = 4$, $e_f(1) = 3$, $e_f(2) = 3$. Example 4.5. Geometric mean cordial labeling of $S(P_7)$ is given below.

Here, in $S(P_7)$, $v_f(0) = 4$, $v_f(1) = 5$, $v_f(2) = 4$ and $e_f(0) = e_f(1) = e_f(2) = 4$.. Example 4.6. Geometric mean cordial labeling of $S(P_8)$ is given below.

Here, in $S(P_8)$, $v_f(0) = 6$, $v_f(1) = 5$, $v_f(2) = 4$ and $e_f(0) = 6$, $e_f(1) = 4$, $e_f(2) = 4$.

We see that the above labeling is not geometric mean cordial labeling. To make the geometric mean cordiality, we change the label as follows.

Theorem 4.7. $S_m(P_{m+1})$ is geometric mean cordial.

Proof. We know that $S_m(P_{m+1})$ is a graph of $2^m \cdot m + 1$ vertices and $2^m \cdot m$ edges. The theorem is easily verified for m = 0, 1, 2. If m = 0, we get a graph P_1 and is of 1 vertex and no edge. Now the graph has no subdivision. If m = 1, we get subdivision

of a graph $S_1(P_2) = S(P_2) \cong P_3$, From the Theorem 4.1 [5], it follows P_3 is geometric mean cordial, $S_1(P_2)$ is geometric mean cordial. If m = 2, we get a subdivision of a graph $S_2(P_3) = S(S_1(P_3)) = S(P_3) \cong P_5$. From the Theorem 4.1 [5], it follows P_5 is geometric mean cordial, $S_2(P_3)$ is geometric mean cordial and hence $S(P_n)$ is geometric mean cordial. **Case (i)**: $m \equiv 0 \pmod{3}$. Let m = 3t, $t \ge 1$.

Now the path has $(2^{3t} \cdot 3_t) + 1$ vertices and $2^{3t} \cdot 3_t$ edges. The labeling is as follows. If we assign 0^{s} to $2^{3t} \cdot t$ vertices, 1^{s} to $2^{3t} \cdot t + 1$ vertices and 2^{s} to $2^{3t} \cdot t$ vertices, then

$$v_f(0) = 2^{3t} \cdot t$$
, $v_f(1) = 2^{3t} \cdot t + 1$, $v_f(2) = 2^{3t} \cdot t$ and
 $e_f(0) = 2^{3t} \cdot t$, $e_f(1) = 2^{3t} \cdot t$, $e_f(2) = 2^{3t} \cdot t$,

In this case, we see that $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for all $i, j \in \{0, 1, 2\}$, f is a geometric mean cordial labeling and hence the m – subdivision of a graph $S_m(P_{m+1})$ is a geometric mean cordial graph.

Case (ii): $m \equiv 1 \pmod{3}$. Let m = 3t + 1.

Now the path has $\begin{pmatrix} 2^{3t+1} \\ 2^{3t+1} \end{pmatrix} + 1$ vertices and $2^{3t+1} \begin{pmatrix} 3t+1 \\ 2^{3t+1} \end{pmatrix}$ edges. The labeling is as follows. There are two subcases.

Subcase (i):
$$v_f(0) = \frac{(2^{3t+1}(3t+1))-1}{3} + 1$$
, $v_f(1) = \frac{(2^{3t+1}(3t+1))-1}{3} + 1$,
 $v_f(2) = \frac{(2^{3t+1}(3t+1))-1}{3}$, $t = 1, 3, 5, \dots$

In this subcase, we get $e_f(0) = \frac{(2^{3t+1}(3t+1))-1}{3} + 1$, $e_f(1) = \frac{(2^{3t+1}(3t+1))-1}{3}$,

$$e_f(2) = \frac{(2^{3t+1}(3t+1)) - 1}{3}$$

Subcase (ii): $v_f(0) = \frac{(2^{3t+1}(3t+1))-2}{3}+1$, $v_f(1) = \frac{(2^{3t+1}(3t+1))-2}{3}+1$,

$$v_f(2) \frac{(2^{3t+1}(3t+1))-2}{3}+1, t=2, 4, 6, \dots$$

In this subcase, we get $e_f(0) = \frac{(2^{3t+1}(3t+1))-2}{3} + 1$, $e_f(1) = \frac{(2^{3t+1}(3t+1))-2}{3}$,

$$e_f(2) \frac{(2^{3t+1}(3t+1))-2}{3}+1.$$

In all the subcases, we see that $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for all $i, j \in \{0, 1, 2\}$, f is a geometric mean cordial labeling and hence the m-subdivision of a graph $S_m(P_{m+1})$ is a geometric mean cordial graph. **Case (iii)**: $m \equiv 2 \pmod{3}$. Let m = 3t + 2.

Now the path has $\binom{3^{t+2}}{2}$. $3_{t+2}+1$ vertices and 2^{3t+2} . 3_{t+2} edges. The labeling is as follows. There are two subcases.

Subcase (i):
$$v_f(0) = \frac{(2^{3t+2}(3t+2))-1}{3} + 1$$
, $v_f(1) = \frac{(2^{3t+2}(3t+2))-1}{3} + 1$,
 $v_f(2) = \frac{(2^{3t+2}(3t+2))-1}{3}$ $t = 1, 3, 5,$

In this subcase, we get $e_f(0) = \frac{(2^{3t+2}(3t+2))-1}{3} + 1$, $e_f(1) = \frac{(2^{3t+2}(3t+2))-1}{3}$,

$$e_f(2) = \frac{(2^{3t+2}(3t+2))-1}{3}.$$

Subcase (ii): $v_f(0) = \frac{(2^{3t+2}(3t+2))-2}{3}+1$, $v_f(1) = \frac{(2^{3t+2}(3t+2))-2}{3}+1$,

$$v_f(2) = \frac{(2^{3t+1}(3t+2))-2}{3} + 1$$
 $t = 2, 4, 6, \dots$

In this subcase, we get $e_f(0) = \frac{(2^{3t+2}(3t+2))-2}{3} + 1$, $e_f(1) = \frac{(2^{3t+2}(3t+2))-2}{3}$,

$$e_f(2) = \frac{(2^{3t+2}(3t+2))-2}{3} + 1.$$

Now we see that $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for all $i, j \in \{0, 1, 2\}$, f is a geometric mean cordial labeling and hence the m-subdivision of a graph $S_m(P_{m+1})$ is a geometric mean cordial graph.

Example 4.8. Geometric mean cordial labeling of $S_3(P_4)$ is given below.

$$S_3(P_4) \cong P_{25}$$

Here $v_f(0) = 8$, $v_f(1) = 9$, $v_f(2) = 8$ and $e_f(0) = 8$, $e_f(1) = 8$, $e_f(2) = 8$.

Example 4.9. Geometric mean cordial labeling of $S_4(P_5)$ is given below.

Example 4.10. Geometric mean cordial labeling of $S_5(P_6)$ is given below.

Here $v_f(0) = 54$, $v_f(1) = 54$, $v_f(2) = 53$ and $e_f(0) = 54$, $e_f(1) = 53$, $e_f(2) = 53$.

Theorem 4.11. $S(C_n)$ is geometric mean cordial iff $n \equiv 1,2 \pmod{3}$

Proof. Let $C_n : u_1 u_2 ... u_n$ be the cycle of *n* vertices and *n* edges. Let $s_1, s_2, ..., s_n$ be the subdivisional vertices of C_n . From the Result 2.6, it follows that $S(C_n)$ is C_{2n} and has 2n vertices and 2n edges. This theorem is also dealt into 3 cases by using congruence modulo *n*.

Case (i): $n \equiv 0 \pmod{3}$. Let $n \equiv 3t$.

Now the cycle C_{2n} has 6t vertices and 6t edges. Here C_{2n} consists of 3t vertices of C_n and 3t subdivisional vertices in order. If $S(C_n)$ admits a geometric mean cordial labeling f, then we should have $v_f(0) = v_f(1) = v_f(2) = 2t$ and $e_f(0) = e_f(1) = e_f(2) = 2t$ ------(1).

Consider $v_f(0) = 2t$. If we assign 0's to 2t number of vertices in $S(C_n)$, then we get $e_f(0) > 2t$, a contradiction to (1). Hence f is not a geometric mean cordial labeling.

Case (ii) : $n \equiv 1 \pmod{3}$. Let n = 3t + 1.

Now the cycle C_{2n} has 6t + 2 vertices and 6t + 2 edges. Here C_{2n} consists of 3t + 1 vertices of C_n and 3t + 1 subdivisional vertices. Assign the label 1 to t + 1 vertices, and the labels 0 and 2 to remaining each of the t vertices in C_n and orderly we assign the same labeling to 3t + 1 subdivisional vertices such that 0 to 1^{st} t subdivisional vertices $s_{1,}$ s_{2} , ..., $s_{t,}$ and 1 and 2 to remaining $s_{t+1,}$ s_{t+2} , ..., s_{2t+1} and $s_{2t+2,}$ s_{2t+3} ,, s_{3t+1} respectively.

Then we get, $v_f(0) = 2t$, $v_f(1) = 2t + 2$, $v_f(2) = 2t$, $e_f(0) = 2t+1$, $e_f(1) = 2t + 1$, $e_f(2) = 2t$, and now it does not satisfy vertex labeling. To make it into geometric mean cordial labeling, we change the one vertex labeled 1 adjacent to 2 by the labeling 2, then we get $v_f(0) = 2t$, $v_f(1) = 2t + 1$, $v_f(2) = 2t + 1$ and $e_f(0) = 2t + 1$, $e_f(1) = 2t$, $e_f(2) = 2t + 1$. If we change the one vertex labeled 1 adjacent to 0 by the labeling 2, then it would not affect the previous edge labeling, it would gives the same result.

Case (iii): $n \equiv 2 \pmod{3}$. Let n = 3t + 2.

Now the cycle C_{2n} has 6t + 4 vertices and 6t + 4 edges. Here C_{2n} consists of 3t + 2 vertices of C_n and 3t + 2 subdivisional vertices. Assign the label 0 to t vertices, and the labels 1 and 2 to remaining each of the t + 1 vertices in C_n and orderly we assign the same labeling to 3t + 2 subdivisional vertices such that 0 to 1^{st} t subdivisional vertices s_1 , s_2 , ..., s_t , and 1 and 2 to remaining s_{t+1} , s_{t+2} , \dots , s_{2t+1} and s_{2t+2} , s_{2t+3} ,, s_{3t+2} respectively. Then we get, $v_f(0) = 2t$, $v_f(2) = 2t + 2$, $v_f(1) = 2t + 2$, and $e_f(0) = 2t + 1$, $e_f(1) = 2t + 1$, $e_f(2) = 2t + 2$, now it does not satisfy vertex labeling. To make it into cordial labeling, we change one vertex labeled 1 adjacent to a vertex labeled 0, by the labeling 0 and one vertex labeled 2 adjacent to a vertex labeled 1 by the labeling 1, then we get $v_f(0) = 2t + 1$, $v_f(1) = 2t + 2$, $v_f(2) = 2t + 1$. In this subcase, we get, $e_f(0) = 2t + 2$, $e_f(1) = 2t + 1$, $e_f(2) = 2t + 1$.

In all cases, we see that $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for all $i, j \in \{0, 1, 2\}, f$ is a geometric mean cordial labeling and hence the subdivision of a graph $S(C_n)$ is a geometric mean cordial graph.

Example 4.12.

Geometric mean cordial labeling of $S(C_7)$ is given below. $0 \quad 2 \quad 2$

 $S(C_7) \cong C_{14}$ Here $v_f(0) = 4$, $v_f(1) = 6$, $v_f(2) = 4$ and $e_f(0) = 5$, $e_f(1) = 5$, $e_f(2) = 4$.

We see that the above labeling is not geometric mean cordial labeling. To make the geometric mean cordiality, we have the following changes of label as follows.

Here $v_f(0) = 4$, $v_f(1) = 5$, $v_f(2) = 5$ and $e_f(0) = 5$, $e_f(1) = 4$, $e_f(2) = 5$ Example 4.13. Geometric mean cordial labeling of $S(C_5)$ is given below.

Here in $S(C_5) = C_{10}$, $v_f(0) = 2$, $v_f(1) = 4$, $v_f(2) = 4$ and $e_f(0) = 3$, $e_f(1) = 3$, $e_f(2) = 4$.

We see that the above labeling is not geometric mean cordial labeling. To make the geometric mean cordiality, we have the following changes of label as follows.

Here $v_f(0) = 3$, $v_f(1) = 4$, $v_f(2) = 3$ and $e_f(0) = 4$, $e_f(1) = 3$, $e_f(2) = 3$.

Theorem 4.14. S_m (C_n) is geometric mean cordial iff $n \equiv 1,2 \pmod{3}$ **Proof.** We know that S_m (C_n) is the graph of $2^m \cdot n$ vertices and $2^m \cdot n$ edges. **Case (i):** $n \equiv 0 \pmod{3}$. Let n = 3t. Let $t \ge 1$.

Now the graph consists of 2^m . 3t vertices and 2^m . 3t edges. If f admits a geometric mean cordial labeling, then it should be

 $v_f(0) = v_f(1) = v_f(2) = 2^m \cdot t$ and $e_f(0) = 2^m \cdot t$, $e_f(1) = 2^m \cdot t$, $e_f(2) = 2^m \cdot t$. When we assign 0^s to $2^m \cdot t$ vertices, we get $e_f(0) > 2^m t$. Hence f is not geometric mean cordial labeling. **Case (ii)**: $n \equiv 1 \pmod{3}$. Let n = 3t+1. Let $t \ge 1$.

Now the graph $S_m(C_n)$ consists of $2^m \cdot (3t+1)$ vertices and $2^m \cdot (3t+1)$ edges. In this case, $S_m(C_{3t+1}) \cong C_2^m \cdot (3t+1)$ is a cycle that is geometric mean cordial.

Case (iii): $n \equiv 2 \pmod{3}$. Let n = 3t+2. Let $m \ge 1$.

Now the graph consists of 2^m . (3t + 2) vertices and 2^m . (3t + 2) edges. In this case, $S_m(C_{3t+2}) \cong C_2^m$. (3t+2) is a cycle that is geometric mean cordial.

In all cases, we see that $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for all $i, j \in \{0, 1, 2\}$, f is a geometric mean cordial labeling and hence the m-subdivision of a graph $S_m(C_n)$ is a geometric mean cordial graph.

Example 4.15

Geometric mean cordial labeling of $S_2(C_4)$ is given below

 $S_1 (C_4) \cong C_8$

Here in $S_2(C_4)$, $v_f(0) = 5$, $v_f(1) = 6$, $v_f(2) = 5$ and $e_f(0) = 6$, $e_f(1) = 5$, $e_f(2) = 5$.

REFERENCES

- 1. Bondy JA and Murthy USR (1976). Graph Theory with Application Newyork, North Holland.
- Cahit I (1987). Cordial Graphs, A weaker version of graceful and harmonious Graphs, Ars. Combinatoria, vol 23, No 3, pp. 201-207.
- 3. Gallian JA (2011). A Dynamic Survey of Graph Labeling, vol 18, pp. 1-219.
- 4. Harary F (1969). Graph Theory, Addison Wesley, New Delhi.
- 5. Chitra Lakshmi K and Nagarajan K (2017). Geometric Mean Cordial Labeling of graphs, International Journal of Mathematics and Soft Computing, vol 7, No 1, pp. 75 - 87.
- Chitra Lakshmi K and Nagarajan K (2017). Geometric Mean Cordial Labeling of Subdivision of Standard Graphs, *International Journal of Pure and Applied Mathematics*, pp. 103 – 112.